#### What We Know

• Two masses attract each other.

The force is: Directly proportional to the product of their masses.

Inversely proportional to the square of the distance between them.

#### Derivation

Let's say we have:

• Masses: m1m 1m1 and m2m 2m2

• Distance between them: rrr

· Gravitational force: FFF

### So, based on proportionality:

 $F \propto m1m2r2F \cdot frac\{m_1 m_2\}\{r^2\}F \propto r2m1m2$ 

To turn this proportionality into an equation, we introduce the gravitational constant GGG:

 $F=G\cdot m1m2r2F=G \cdot cdot \cdot frac\{m_1 m_2\}\{r^2\}F=G\cdot r2m1m2$ 

#### Where:

- FFF: Force of gravity (in newtons)
- GGG: Gravitational constant =6.674×10-11 Nm2/kg2= 6.674 \times 10^{-11} \,

 $\text{text{Nm}^2/\text{text{kg}^2=6.674}\times10-11Nm2/kg2}$ 

- m1,m2m 1, m 2m1,m2: Masses in kg
- rrr: Distance between the centers of the masses in meters

## Why Inverse Square?

The inverse square nature  $(1r2\frac{1}{r^2}r^2)$  arises from geometry:

- Think of a point mass radiating "influence" (like gravity or light) equally in all directions.
- The surface area of a sphere grows as  $4\pi r^2 4\pi^2$ , so the "influence" per unit area drops with  $1r^2 \frac{1}{r^2}$ .

This makes gravitational force weaker with distance — but never zero.

Final Formula

 $F=G\cdot m1m2r2\boxed\{F=G\cdot\frac\{m_1\ m_2\}\{r^2\}\}F=G\cdot r2m1m2$ 

This is Newton's Universal Law of Gravitation — clean, simple, and still used in modern astrophysics and orbital mechanics.

below is the first image

Cedric himself knew nothing whatever about it. It had never been even mentioned to him. He knew that his papa had been an Englishman, because his mamma had told him so; but then his papa had died when he was so little a boy that he could not remember very much about him, except that he was big, and had blue eyes and a long mustache, and that it was a splendid thing to be carried around the room on his shoulder.

below is the seconf imgae

This is a lot of 12 point text to test the ocr code and see if it works on all types of file format.

The quick brown dog jumped over the lazy fox. The quick brown dog jumped over the lazy fox. The quick brown dog jumped over the lazy fox. The quick brown dog jumped over the lazy fox.

## MySQL Workbench



# Cannot Connect to Database Server

Your connection attempt failed for user 'django' to the MySQL server at 43.205.104.176:3306:

Unable to connect to 43,205,104,176:3306

## Please:

- 1 Check that MySQL is running on address 43.205.104.176
- 2 Check that MySQL is reachable on port 3306 (note: 3306 is the default, but this can be changed)
- 3 Check the user django has rights to connect to
- 43.205.104.176 from your address (MySQL rights define what clients can connect to the server and from which machines)
- 4 Make sure you are both providing a password if needed and using the correct password for 43.205.104.176 connecting from the host address you're connecting from

Close