
Hands-On
 Selenium WebDriver
 with Java
A Deep Dive into the Development
of End-to-End Tests

Boni García
Foreword by Simon Stewart

Covers

Selenium 4

G
a

rcía

Boni García

Hands-On Selenium
WebDriver with Java

A Deep Dive into the Development of
End-to-End Tests

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-11000-0

[LSI]

Hands-On Selenium WebDriver with Java
by Boni García

Copyright © 2022 Boni García. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (https://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Suzanne McQuade
Development Editor: Rita Fernando
Production Editor: Kristen Brown
Copyeditor: Piper Editorial Consulting, LLC
Proofreader: JM Olejarz

Indexer: Sam Arnold-Boyd
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

April 2022: First Edition

Revision History for the First Edition
2022-03-31: First Release

See https://oreilly.com/catalog/errata.csp?isbn=9781098110000 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Hands-On Selenium WebDriver with
Java, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

https://oreilly.com
https://oreilly.com/catalog/errata.csp?isbn=9781098110000

To the most precious thing to me in the world: my children, Pablo and Carlos.

I love you more than anything.

Table of Contents

Foreword. xi

Preface. xv

Part I. Introduction

1. A Primer on Selenium. 3
Selenium Core Components 3

Selenium WebDriver 5
Selenium Grid 6
Selenium IDE 8

Selenium Ecosystem 10
Language Bindings 10
Driver Managers 11
Locator Tools 12
Frameworks 12
Browser Infrastructure 14
Community 15

Software Testing Fundamentals 16
Levels of Testing 16
Types of Testing 19
Testing Methodologies 21
Test Automation Tools 24

Summary and Outlook 28

v

2. Preparing for Testing. 29
Requirements 29

Java Virtual Machine 30
Text Editor or IDE 30
Browsers and Drivers 30
Build Tools 31
Optional Software 31

Project Setup 32
Project Layout 32
Dependencies 34

Hello World 45
Using Additional Browsers 48

Summary and Outlook 49

Part II. The Selenium WebDriver API

3. WebDriver Fundamentals. 53
Basic WebDriver Usage 53

WebDriver Creation 53
WebDriver Methods 57
Session Identifier 58
WebDriver Disposal 59

Locating WebElements 59
The Document Object Model (DOM) 59
WebElement Methods 61
Location Strategies 62
Finding Locators on a Web Page 72
Compound Locators 74
Relative Locators 76
What Strategy Should You Use? 80

Keyboard Actions 82
File Uploading 83
Range Sliders 84

Mouse Actions 85
Web Navigation 85
Checkboxes and Radio Buttons 86

User Gestures 86
Right-Click and Double-Click 88
Mouseover 89
Drag and Drop 90

vi | Table of Contents

Click and Hold 91
Copy and Paste 92

Waiting Strategies 94
Implicit Wait 94
Explicit Wait 96
Fluent Wait 98

Summary and Outlook 100

4. Browser-Agnostic Features. 101
Executing JavaScript 101

Synchronous Scripts 102
Pinned Scripts 108
Asynchronous Scripts 109

Timeouts 110
Page Loading Timeout 110
Script Loading Timeout 111

Screenshots 112
WebElement Screenshots 115

Window Size and Position 116
Browser History 117
The Shadow DOM 118
Cookies 120
Dropdown Lists 125

Data List Elements 127
Navigation Targets 128

Tabs and Windows 129
Frames and Iframes 131

Dialog Boxes 133
Alerts, Confirms, and Prompts 134
Modal Windows 136

Web Storage 137
Event Listeners 138
WebDriver Exceptions 142
Summary and Outlook 144

5. Browser-Specific Manipulation. 145
Browser Capabilities 145

Headless Browser 147
Page Loading Strategies 151
Device Emulation 153
Web Extensions 155

Table of Contents | vii

Geolocation 160
Notifications 162
Browser Binary 165
Web Proxies 166
Log Gathering 168
Get User Media 169
Loading Insecure Pages 171
Localization 173
Incognito 175
Edge in Internet Explorer Mode 175

The Chrome DevTools Protocol 177
CDP Selenium Wrappers 177
CDP Raw Commands 180

Location Context 191
Web Authentication 191
Print Page 193
WebDriver BiDi 194
Summary and Outlook 196

6. Remote WebDriver. 197
Selenium WebDriver Architecture 197
Creation of RemoteWebDriver Objects 199

RemoteWebDriver Constructor 199
RemoteWebDriver Builder 201
WebDriverManager Builder 201
Selenium-Jupiter 202

Selenium Grid 203
Standalone 203
Hub-nodes 207
Fully Distributed 208
Observability 213
Configuration 216

Cloud Providers 217
Browsers in Docker Containers 219

Docker Images for Selenium Grid 220
Selenoid 222
WebDriverManager 224
Selenium-Jupiter 227

Summary and Outlook 228

viii | Table of Contents

Part III. Advanced Concepts

7. The Page Object Model (POM). 231
Motivation 231
The POM Design Pattern 232

Page Objects 234
Robust Page Objects 236

Creating a Domain Specific Language (DSL) 240
Page Factory 242
Summary and Outlook 244

8. Testing Framework Specifics. 245
Parameterized Tests 245

Cross-Browser Testing 252
Categorizing and Filtering Tests 256
Ordering Tests 261
Failure Analysis 265
Retrying Tests 273
Parallel Test Execution 278
Test Listeners 282
Disabled Tests 286
Summary and Outlook 289

9. Third-Party Integrations. 291
File Download 291

Using Browser-Specific Capabilities 292
Using an HTTP Client 294

Capture Network Traffic 296
Nonfunctional Testing 298

Performance 298
Security 303
Accessibility 306
A/B Testing 307

Fluent API 308
Test Data 309
Reporting 312
Behavior Driven Development 316
Web Frameworks 320
Summary and Outlook 322

Table of Contents | ix

10. Beyond Selenium. 325
Mobile Apps 325

Mobile Testing 326
Appium 327

REST Services 332
REST Assured 334

Alternatives to Selenium 336
Cypress 336
WebDriverIO 339
TestCafe 340
Puppeteer 341
Playwright 342

Summary and Final Remarks 344

A. What’s New in Selenium 4. 345

B. Driver Management. 351

C. Examples Repository Setup. 359

Index. 379

x | Table of Contents

Foreword

In 1999, Kent Beck wrote Extreme Programming Explained. This introduced the
world to Extreme Programming (XP). For many people this was the way they first
heard about Agile software development. Over the next 20 years, many of the ideas
behind the book faded away, but there was one idea that stuck: we should be writing
automated tests that verify our code is working as it should. XP expected these tests
to be written before the app logic, leading to Test Driven Development (TDD).

Today, while strict TDD is seldom practiced, the idea of writing tests is prevalent
(though not always popular!). Most companies now acknowledge the need for some
kind of automated testing. Many of us actually write tests! Even “regular” QA roles
now frequently require people to write code.

In 2004, Jason Huggins started Selenium at a software development consultancy
called Thoughtworks, which specialized in Agile development. Employees were stee‐
ped in XP and were keen proponents of TDD. From the very beginning, Selenium
has been closely associated with testing.

Back then, testing websites in a browser was relatively simple. These were the olden
days, when there were dozens of browsers to choose between and JS was still spelled
“JavaScript.” Sites were small, functionality limited, and the interactions the user
could have via the browser were limited too: maybe just filling out a form and click‐
ing a “submit” button. This is the world that Selenium was born into, and the APIs
and functionality it offered were as focused as the platform it tested.

Then the world discovered XMLHttpRequest hiding in Internet Explorer, it was
implemented in Firefox, and suddenly “Web 2.0” became the hot new buzzword.
Google Maps showed the world what browsers could do, and the world loved it! Web‐
sites started offering more functionality, driven by carefully handcrafted JS. Selenium
adapted and evolved too. I wrote the WebDriver APIs, and these came to the fore.
Although they aimed to lead people in a certain direction, the underlying complexity
of what Selenium was trying to automate meant that it became a more complicated
tool.

xi

As I write this, browsers are more capable, powerful, and flexible than ever before.
We don’t write “websites” any more. We write “web apps,” the current ultimate
expression of that being the “Single Page App” or SPA. These push browsers harder
than ever, but they’re a natural evolution. Fortunately, once again, Selenium has
evolved and grown to allow these kinds of apps to be automated, adding a range of
new features in Selenium 4 to help cope with the new testing needs. Adding this func‐
tionality has made Selenium an even more complicated tool.

But despite having grown more complicated over the years, Selenium is a tool used by
people of all levels of programming comfort and ability. There’s more to writing a
successful Selenium test than “just” learning the APIs. There’s a wealth of technology
that surrounds it, from the test frameworks you can use, to the Design Patterns you
can (and should!) follow when writing the tests, to how we manage the binary depen‐
dencies required by our tests. If we want our tests to run in a reasonable amount of
time, we need to have access to infrastructure that supports this.

There’s just so much to learn, and there’s surprisingly little guidance for how all the
pieces fit together.

That’s why I’m so glad that Boni has written this book. It starts by explaining what
Selenium is, and the various components within it, and then each chapter builds on
the previous ones, gradually introducing more ideas and concepts in a way that feels
natural and obvious.

Better yet, Boni goes further than just discussing how to use the raw APIs. He also
describes the ecosystem of services, tools, and test runners that people need to under‐
stand to get the most from the tool. His experience using Selenium and providing
some of these supporting tools shines through: you’re in the hands of a master here.

The way this book is structured allows anyone using Selenium to dive in at the point
that feels right to them. Just getting started? Then start at the beginning of the book,
as Boni lays out the basics for you in an engaging and approachable way. Maybe
you’re familiar with Selenium but want to know what’s new in Selenium 4, or some of
the less well-known features it offers? Then just jump into the middle of the book;
there’s so much there, even I learned a few things!

One thing that I hope people take away from this book is that Selenium is only part of
the puzzle that is automated testing. Boni covers this too, introducing readers (you!)
to how to integrate it into your test frameworks, to the various unit testing libraries
you might want to use, and to Design Patterns that can help keep your tests maintain‐
able and fresh. After all, although it may take time to write an automated test in the
first place, it can live for years, and being able to work on it with ease is important.

xii | Foreword

This book paves the road to mastering Selenium and using it effectively. I sincerely
hope that this makes using it easier and—dare I say it?—more enjoyable.

— Simon Mavi Stewart
Creator of WebDriver,

Selenium Project Lead 2009–2021,
and coeditor of the W3C WebDriver and

WebDriver BiDi specifications
London, January 2022

Foreword | xiii

Preface

Selenium is an open source umbrella project that enables the automation of web
browsers. The core component of the Selenium project is Selenium WebDriver, a
library for controlling browsers (e.g., Chrome, Firefox, Edge, Safari, or Opera) pro‐
grammatically. Selenium WebDriver provides a cross-browser Application Program‐
ming Interface (API) in several programming languages (officially supported in Java,
JavaScript, Python, C#, or Ruby).

Although we can use Selenium WebDriver for multiple purposes related to browser
automation, its primary use is implementing end-to-end tests for web application
verification. Thousands of organizations and testers now use Selenium worldwide,
and it is one of the leading solutions for end-to-end testing, supporting a multi-
million-dollar industry.

Who Should Read This Book
This book provides a comprehensive summary of the main features of Selenium
WebDriver version 4, using Java as language binding. It reviews the main aspects of
automated web navigation, browser manipulation, web element interaction, user
impersonation, automated driver management, the Page Object Model (POM) design
pattern, use of remote and cloud infrastructure, integration with Docker and third-
party tools, and much more.

The primary audience of this book includes Java coders of different levels (from
beginner to advanced), such as developers, testers, QA engineers, etc. Thus, you need
a basic knowledge of the Java language and object-oriented programming. The final
goal is to have a comprehensive understanding of the main aspects of Selenium Web‐
Driver to create end-to-end tests in Java using different testing frameworks of your
choice (e.g., JUnit or TestNG).

xv

Why I Wrote This Book
Test automation is a software testing technique that leverages automation tools to
control test execution. It allows increased efficiency and effectiveness while ensuring
the overall quality of a software system. In this arena, Selenium WebDriver is the de
facto standard library to develop end-to-end tests for web applications. This book
provides the first complete review of Selenium 4 to date.

The book follows a learn-by-doing approach. To that aim, we review the main fea‐
tures of Selenium WebDriver through ready-to-be-executed test examples. These
examples are publicly available in a GitHub open source repository (https://
github.com/bonigarcia/selenium-webdriver-java). For the sake of completeness, this
repository contains each test example in different flavors of the embedding testing
framework: JUnit 4, JUnit 5 (alone or with Selenium-Jupiter), and TestNG.

Navigating This Book
The content of this book is divided into 3 parts and 10 chapters:

Part I, Introduction
Part I provides technological background on Selenium, test automation, and project
setup. This part, more theoretical than practical, is composed of two chapters:

• Chapter 1, “A Primer on Selenium”, presents the core components of the Sele‐
nium project (WebDriver, Grid, and IDE) and its ecosystem (i.e., the tools and
technologies around Selenium). In addition, this chapter reviews the principles
of end-to-end testing related to Selenium.

• Chapter 2, “Preparing for Testing”, explains how to set up a Java project (Maven
and Gradle) containing end-to-end tests that use the Selenium WebDriver API.
Then, you will learn how to develop your first WebDriver tests using different
testing frameworks: JUnit 4, JUnit 5 (alone or in conjunction with Selenium-
Jupiter), and TestNG.

Part II, The Selenium WebDriver API
Part II provides practical insight into the Selenium WebDriver API. This part is gui‐
ded by tests available in the examples repository and includes the following chapters:

• Chapter 3, “WebDriver Fundamentals”, describes the primary aspects of the Sele‐
nium WebDriver API for carrying out automated interaction with web applica‐
tions. Thus, this chapter reviews several strategies for locating and waiting for
web elements. In addition, you will discover how to impersonate user actions
(i.e., automated interactions using the keyboard and mouse) in a browser.

xvi | Preface

https://github.com/bonigarcia/selenium-webdriver-java
https://github.com/bonigarcia/selenium-webdriver-java

• Chapter 4, “Browser-Agnostic Features”, reviews those aspects of the Selenium
WebDriver API that are interoperable in different browsers. Hence, this chapter
shows how to execute JavaScript, create event listeners, manage windows, make
screenshots, handle the shadow DOM, manipulate cookies, access the browser
history or web storage, or interact with windows, tabs, and iframes, among other
elements.

• Chapter 5, “Browser-Specific Manipulation”, explains those aspects of the Sele‐
nium WebDriver API particular to specific browsers. This group of features cov‐
ers browser capabilities (options, arguments, preferences, etc.), the Chrome
DevTools Protocol (CDP), geolocation functions, basic and web authentication,
printing pages to PDF, or the WebDriver BiDi API.

• Chapter 6, “Remote WebDriver”, describes how to use the Selenium WebDriver
API to control remote browsers. Then, you will learn how to set up and use Sele‐
nium Grid version 4. Finally, you will discover how to use advanced infrastruc‐
ture for Selenium tests in cloud providers (e.g., Sauce Labs, BrowserStack, or
CrossBrowserTesting, among others) and browsers in Docker containers.

Part III, Advanced Concepts
Part III focuses on leveraging the Selenium WebDriver API in different ambits and
use cases. This part includes the following chapters:

• Chapter 7, “The Page Object Model (POM)”, introduces POM, a popular design
pattern used in conjunction with Selenium WebDriver. This pattern allows users
to model web pages using object-oriented classes to ease test maintenance and
reduce code duplication.

• Chapter 8, “Testing Framework Specifics”, reviews several particular features of
the unit testing framework used together with Selenium WebDriver that allow
improvements to different aspects of the overall testing process. To that aim, this
chapter first explains how to carry out cross-browser testing (i.e., reusing the
same test logic for verifying web applications using different browsers) using par‐
ameterized tests and test templates. Then, you will learn how to split tests into
different categories for execution filtering, ordering tests, failure analysis (i.e.,
collecting and analyzing data to determine the cause of a failure), retrying tests,
parallel test execution, test listeners, or disabling tests.

• Chapter 9, “Third-Party Integrations”, reviews different technologies you can use
to enhance your Selenium WebDriver tests, such as reporting tools, test data gen‐
eration, and other frameworks (e.g., Cucumber or Spring). Moreover, this chap‐
ter describes how to use external libraries with Selenium to implement specific
use cases, such as file downloading or nonfunctional tests (such as load, security,
or accessibility).

Preface | xvii

• Chapter 10, “Beyond Selenium”, presents a couple of automation frameworks
related to Selenium: Appium (for mobile testing) and REST Assured (for testing
REST web services). To conclude, we review some of the most relevant current
alternatives to Selenium WebDriver, such as Cypress, WebDriverIO, TestCafe,
Puppeteer, or Playwright.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that the user should type literally.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

xviii | Preface

Using Code Examples
Code examples are available for download at https://github.com/bonigarcia/selenium-
webdriver-java. If you have a technical question or a problem using the code exam‐
ples, please email bookquestions@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Hands-On Selenium
WebDriver with Java by Boni García (O’Reilly). Copyright 2022 Boni García,
978-1-098-11000-0.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

Preface | xix

https://github.com/bonigarcia/selenium-webdriver-java
https://github.com/bonigarcia/selenium-webdriver-java
mailto:bookquestions@oreilly.com
mailto:permissions@oreilly.com
https://oreilly.com
https://oreilly.com

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/handsOn_SeleniumWDJ.

Email bookquestions@oreilly.com to comment or ask technical questions about this
book.

For news and information about our books and courses, visit https://oreilly.com.

Find us on Facebook: https://facebook.com/oreilly.

Follow us on Twitter: https://twitter.com/oreillymedia.

Watch us on YouTube: https://www.youtube.com/oreillymedia.

Acknowledgments
First, I want to thank the team at O’Reilly for making this book a reality. Their edito‐
rial support has been exemplary through every stage of this journey.

I also want to recognize the technical reviewers who helped with this book. Their val‐
uable feedback and expert advice improved its quality significantly: Diego Molina
(staff software engineer at Sauce Labs and technical lead of the Selenium project), Fil‐
ippo Ricca (associate professor of computer science at Università di Genova), Andrea
Stocco (postdoctoral researcher at Software Institute in Università della Svizzera ital‐
iana), Ivan Krutov (software developer at Aerokube), and Daniel Hinojosa (inde‐
pendent consultant, programmer, instructor, speaker, and author)—thank you very
much.

Lastly, I would like to acknowledge the contribution of Simon Stewart (creator of
WebDriver and Selenium project lead until 2021). Thanks a lot, Simon, for writing
the foreword on this book and for your priceless feedback about its content. But
mainly, I want to recognize your work during all these years leading the Selenium
project. Your contributions to the automation testing community are already part of
software history.

xx | Preface

https://oreil.ly/handsOn_SeleniumWDJ
mailto:bookquestions@oreilly.com
https://oreilly.com
https://facebook.com/oreilly
https://twitter.com/oreillymedia
https://www.youtube.com/oreillymedia

PART I

Introduction

Selenium is an open source umbrella project composed of three core components:
WebDriver, Grid, and IDE. Selenium provides advanced capabilities for browser
automation that practitioners typically use for implementing end-to-end tests for web
applications. This first part of the book is a comprehensive overview of the Selenium
project and its ecosystem. Moreover, it provides a primer on the software testing
theory, focusing on its practical applications for Selenium WebDriver. Finally, you
will discover how to set up a project (using Maven or Gradle) for developing Web‐
Driver tests. For the sake of completeness, I cover different alternatives regarding the
unit testing framework used to embed the calls to the Selenium WebDriver API,
namely, JUnit 4, JUnit 5 (alone or extended by Selenium-Jupiter), and TestNG.

CHAPTER 1

A Primer on Selenium

Selenium is an open source suite composed of a set of libraries and tools that enable
the automation of web browsers. We can see Selenium as an umbrella project with
three core components: WebDriver, Grid, and IDE (Integrated Development Envi‐
ronment). Selenium WebDriver is a library that allows the driving of browsers pro‐
grammatically. Thus, we can use Selenium WebDriver to navigate websites and
interact with web pages (e.g., clicking on links, filling in forms, etc.) as a real user
would do, in an automated fashion. The primary use of Selenium WebDriver is the
automated testing of web applications. Other Selenium uses include the automation
of web-based administration tasks or web scraping (automated web data extraction).

This chapter provides a comprehensive overview of the Selenium core components:
WebDriver, Grid, and IDE. Then, it reviews the Selenium ecosystem, i.e., other tools
and technologies around it. Finally, it analyzes the foundations of software testing
related to Selenium.

Selenium Core Components
Jason Huggins and Paul Hammant created Selenium in 2004 while working in
Thoughtworks. They chose the name “Selenium” as a counterpart to Mercury, an
existing testing framework developed by Hewlett-Packard. The name is significant
because the chemical selenium is known for reducing the toxicity of mercury.

That initial version of Selenium (known today as Selenium Core) is a JavaScript
library that impersonates user actions in web applications. Selenium Core interprets
the so-called Selenese commands to achieve this task. These commands are encoded
as an HTML table composed of three parts: command (action executed in a web
browser, such as opening a URL or clicking a link), target (locator that identifies a

3

https://www.selenium.dev

web element, such as the attribute of a given component), and value (optional data,
such as the text typed into a web-form field).

Huggins and Hammant added a scripting layer to Selenium Core in a new project
called Selenium Remote Control (RC). Selenium RC follows a client-server architec‐
ture. Clients use a binding language (such as Java or JavaScript) to send Selenese
commands over HTTP to an intermediate proxy called the Selenium RC Server. This
server launches web browsers on demand, injecting the Selenium Core library into a
website and proxying requests from clients to Selenium Core. In addition, the Sele‐
nium RC Server masks the target website to the same local URL of the injected Sele‐
nium Core library to avoid same-origin policy concerns. This approach was a game-
changer for browser automation at that time, but it had significant limitations. First,
because JavaScript is the underlying technology to support automation, some actions
are not permitted since JavaScript does not allow them—for instance, uploading and
downloading files or handling pop-ups and dialogs, to name a few. Besides, Selenium
RC introduces a relevant overhead that impacts its performance.

In parallel, Simon Stewart created the project WebDriver in 2007. WebDriver and
Selenium RC were equivalent from a functional perspective, i.e., both projects allow
programmers to impersonate web users using a programming language. Neverthe‐
less, WebDriver uses the native support of each browser to carry out the automation,
and therefore, its capabilities and performance are far superior to RC. In 2009, after a
meeting between Jason Huggins and Simon Stewart at the Google Test Automation
Conference, they decided to merge Selenium and WebDriver in a single project. The
new project was called Selenium WebDriver or Selenium 2. This new project uses a
communication protocol based on HTTP combined with the native automation sup‐
port on the browser. That approach is still the basis of Selenium 3 (released in 2016)
and Selenium 4 (released in 2021). Now we refer to Selenium RC and Core as “Sele‐
nium 1,” and its use is discouraged in favor of Selenium WebDriver. This book focu‐
ses on the latest version of Selenium WebDriver to date, i.e., version 4.

Appendix A summarizes the novelties shipped with Selenium 4.
This appendix also contains a migration guide for bumping from
Selenium 3 to 4.

Today, Selenium is a well-known automation suite composed of three subprojects:
WebDriver, Grid, and IDE. The following subsections present the main characteris‐
tics of each one.

4 | Chapter 1: A Primer on Selenium

Selenium WebDriver
Selenium WebDriver is a library that allows the controlling of web browsers automat‐
ically. To that aim, it provides a cross-platform API in different language bindings.
The official programming languages supported by Selenium WebDriver are Java,
JavaScript, Python, Ruby, and C#. Internally, Selenium WebDriver uses the native
support implemented by each browser to carry out the automation process. For this
reason, we need to place a component called driver between the script using the Sele‐
nium WebDriver API and the browser. Table 1-1 summarizes the browsers and driv‐
ers officially supported by Selenium WebDriver.

The name Selenium is widely used to refer to the library for
browser automation. Since this term is also the name of the
umbrella project, I use Selenium in this book to identify the
browser automation suite, which is composed of three compo‐
nents: Selenium WebDriver (library), Selenium Grid (infrastruc‐
ture), and Selenium IDE (tool).

Table 1-1. Browsers and drivers supported by Selenium WebDriver

Browser Driver Operating
system

Maintainer Download

Chrome/
Chromium

chromedriver Windows/
macOS/Linux

Google https://chromedriver.chromium.org

Edge msedgedriver Windows/
macOS/Linux

Microsoft https://developer.microsoft.com/en-us/microsoft-edge/tools/
webdriver

Firefox geckodriver Windows/
macOS/Linux

Mozilla https://github.com/mozilla/geckodriver

Opera operadriver Windows/
macOS/Linux

Opera
Software AS

https://github.com/operasoftware/operachromiumdriver

Internet
Explorer

IEDriverServer Windows Selenium
project

https://www.selenium.dev/downloads

Safari safaridriver macOS Apple Built-in

Drivers (e.g., chromedriver, geckodriver, etc.) are platform-dependent binary files
that receive commands from a WebDriver script and translate them into some
browser-specific language. In the first releases of Selenium WebDriver (i.e., in Sele‐
nium 2), these commands (also known as the Selenium protocol) were JSON messages
over HTTP (the so-called JSON Wire Protocol). Nowadays, this communication (still
JSON over HTTP) follows a standard specification named W3C WebDriver. This
specification is the preferred Selenium protocol as of Selenium 4.

Selenium Core Components | 5

https://chromedriver.chromium.org
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver
https://github.com/mozilla/geckodriver
https://github.com/operasoftware/operachromiumdriver
https://www.selenium.dev/downloads
https://www.w3.org/TR/webdriver

Figure 1-1 summarizes the basic architecture of Selenium WebDriver we have seen so
far. As you can see, this architecture has three tiers. First, we find a script using the
Selenium WebDriver API (Java, JavaScript, Python, Ruby, or C#). This script sends
W3C WebDriver commands to the second layer, in which we find the drivers. This
figure shows the specific case of using chromedriver (to control Chrome) and gecko‐
driver (to control Firefox). Finally, the third layer contains the web browsers. In the
case of Chrome, the native browser follows the DevTools Protocol. DevTools is a set of
developer tools for browsers based on the Blink rendering engine, such as Chrome,
Chromium, Edge, or Opera. The DevTools Protocol is based on JSON-RPC messages
and allows inspecting, debugging, and profiling these browsers. In Firefox, the native
automation support uses the Marionette protocol. Marionette is a remote protocol
based on JSON, allowing instrumenting and controlling web browsers based on the
Gecko engine (such as Firefox).

Figure 1-1. Selenium WebDriver architecture

Overall, Selenium WebDriver allows controlling web browsers as a user would, but
programmatically. To that aim, the Selenium WebDriver API provides a wide variety
of features to navigate web pages, interact with web elements, or impersonate user
actions, among many other capabilities. The target application is web-based, such as
static websites, dynamic web applications, Single Page Applications (SPA), complex
enterprise systems with a web interface, etc.

Selenium Grid
The second project of the Selenium family is Selenium Grid. Philippe Hanrigou
started the development of this project in 2008. Selenium Grid is a group of net‐
worked hosts that provides browser infrastructure for Selenium WebDriver. This
infrastructure enables the (parallel) execution of Selenium WebDriver scripts with
remote browsers of a different nature (types and versions) in multiple operating
systems.

6 | Chapter 1: A Primer on Selenium

https://chromedevtools.github.io/devtools-protocol
https://firefox-source-docs.mozilla.org/testing/marionette

Figure 1-2 shows the basic architecture of Selenium Grid. As you can see, a group of
nodes provides browsers used by Selenium scripts. These nodes can use different
operating systems (as we saw in Table 1-1) with various installed browsers. The cen‐
tral entry point to this Grid is the Hub (also known as Selenium Server). This server-
side component keeps track of the nodes and proxies requests from the Selenium
scripts. Like in Selenium WebDriver, the W3C WebDriver specification is the stan‐
dard protocol for the communication between these scripts and the Hub.

Figure 1-2. Selenium Grid hub-nodes architecture

The hub-nodes architecture in Grid has been available since Selenium 2. This archi‐
tecture is also present in Selenium 3 and 4. Nevertheless, this centralized architecture
can lead to performance bottlenecks if the number of requests to the Hub is high.
Selenium 4 provides a fully distributed flavor of Selenium Grid to avoid this problem.
This architecture implements advanced load balancing mechanisms to avoid over‐
loading any component.

Chapter 6 describes how to set up Selenium Grid following the
classical approach (based on a hub and set of nodes). This chapter
also covers the standalone mode (i.e., hub and node(s) hosted in
the same machine) and the fully distributed architecture.

Selenium Core Components | 7

Selenium IDE
Selenium IDE is the last core component of the Selenium suite. Shinya Kasatani cre‐
ated this project in 2006. Selenium IDE is a tool that implements the so-called Record
and Playback (R&P) automation technique. As the name suggests, this technique has
two steps. First, in Selenium IDE, the record part captures user interactions with a
browser, encoding these actions as Selenium commands. Second, we use the gener‐
ated Selenium script to execute a browser session automatically (playback).

This early version of Selenium IDE was a Firefox plug-in that embedded Selenium
Core to record, edit, and play back Selenium scripts. These early versions were XPI
modules (i.e., a technology used to create Mozilla extensions). As of version 55
(released in 2017), Firefox migrated support for add-ons to the W3C Browser Exten‐
sion specification. As a result, Selenium IDE was discontinued, and for some time, it
has not been possible to use it. The Selenium team rewrote Selenium IDE following
the Browser Extensions recommendation to solve this problem. Thanks to this, we
can now use Selenium IDE in multiple browsers, such as Chrome, Edge, and Firefox.

Figure 1-3 shows the new Selenium IDE GUI (Graphical User Interface).

Using this GUI, users can record interactions with a browser and edit and execute the
generated script. Selenium IDE encodes each interaction in different parts: a com‐
mand (i.e., the action executed in the browser), a target (i.e., the locator of the web
element), and a value (i.e., the data handled). Optionally, we can include a description
of the command. Figure 1-3 shows a recorded example of these steps:

1. Open website (https://bonigarcia.dev/selenium-webdriver-java). We will use this
website as the practice site in the rest of the book.

2. Click on the link with the text “GitHub.” As a result, the navigation moves to the
examples repository source code.

3. Assert that the book title (Hands-On Selenium WebDriver with Java) is present on
the web page.

4. Close the browser.

8 | Chapter 1: A Primer on Selenium

https://www.selenium.dev/selenium-ide
https://browserext.github.io/browserext
https://browserext.github.io/browserext
https://bonigarcia.dev/selenium-webdriver-java

Figure 1-3. Selenium IDE showing an example of a recorded script

Once we have created a script in Selenium IDE, we can export this script as a Sele‐
nium WebDriver test. For instance, Figure 1-4 shows how to convert the presented
example as a JUnit test case. Finally, we can save the project on our local machine.
The resulting project for this sample is available in the examples GitHub repository.

The Selenium project is porting Selenium IDE to Electron at the
time of this writing. Electron is an open source framework based
on Chromium and Node.js that allows desktop application
development.

Selenium Core Components | 9

https://github.com/bonigarcia/selenium-webdriver-java/tree/master/selenium-ide
https://www.electronjs.org

Figure 1-4. Exporting a Selenium IDE script to a JUnit test case

Selenium Ecosystem
Software ecosystems are collections of elements interacting with a shared market
underpinned by a common technological background. In the case of Selenium, its
ecosystem involves the official core projects and other related projects, libraries, and
actors. This section reviews the Selenium ecosystem, divided into the following cate‐
gories: language bindings, driver managers, frameworks, browser infrastructure, and
community.

Language Bindings
As we already know, the Selenium project maintains various language bindings for
Selenium WebDriver: Java, JavaScript, Python, Ruby, and C#. Nevertheless, other lan‐
guages are also available. Table 1-2 summarizes these language bindings for Selenium
WebDriver maintained by the community.

Table 1-2. Unofficial language bindings for Selenium WebDriver

Name Language License Maintainer Website
hs-webdriver Haskell BSD-3-Clause Adam Curtis https://github.com/kallisti-dev/hs-webdriver

php-webdriver PHP MIT Facebook,
community

https://github.com/php-webdriver/php-webdriver

RSelenium R AGPLv3 rOpenSci https://github.com/ropensci/RSelenium

10 | Chapter 1: A Primer on Selenium

https://github.com/kallisti-dev/hs-webdriver
https://github.com/php-webdriver/php-webdriver
https://github.com/ropensci/RSelenium

Name Language License Maintainer Website
Selenium Go MIT Miki Tebeka https://github.com/tebeka/selenium

Selenium-Remote-
Driver

Perl Apache 2.0 George S. Baugh https://github.com/teodesian/Selenium-Remote-Driver

webdriver.dart Dart Apache 2.0 Google https://github.com/google/webdriver.dart

wd JavaScript Apache 2.0 Adam Christian https://github.com/admc/wd

Driver Managers
Drivers are mandatory components to control web browsers natively with Selenium
WebDriver (see Figure 1-1). For this reason, before using the Selenium WebDriver
API, we need to manage these drivers. Driver management is the process of down‐
loading, setting up, and maintaining the proper driver for a given browser. The usual
steps in the driver management procedure are:

1. Download
Each browser has its own driver. For example, we use chromedriver for control‐
ling Chrome or geckodriver for Firefox (see Table 1-1). The driver is a platform-
specific binary file. Therefore, we need to download the proper driver for a given
operating system (typically, Windows, macOS, or Linux). In addition, we need to
consider the driver version since a driver release is compatible with a given
browser version (or range). For example, to use Chrome 91.x, we need to
download chromedriver 91.0.4472.19. We usually find the browser-driver com‐
pliance in the driver documentation or release notes.

2. Setup
Once we have the proper driver, we need to make it available in our Selenium
WebDriver script.

3. Maintenance
Modern web browsers (e.g., Chrome, Firefox, or Edge) upgrade themselves auto‐
matically and silently, without prompting the user. For this reason, and concern‐
ing Selenium WebDriver, we need to maintain the browser-driver version
compatibility in time for these so-called evergreen browsers.

As you can see, the driver maintenance process can be time-consuming. Further‐
more, it can cause problems for Selenium WebDriver users (e.g., failed tests due to
browser-driver incompatibility after an automatic browser upgrade). For this reason,
the so-called driver managers aim to carry out the driver management process in an
automated fashion to some extent. Table 1-3 summarizes the available driver manag‐
ers for different language bindings.

Selenium Ecosystem | 11

https://github.com/tebeka/selenium
https://github.com/teodesian/Selenium-Remote-Driver
https://github.com/google/webdriver.dart
https://github.com/admc/wd

Table 1-3. Driver managers for Selenium WebDriver

Name Language License Maintainer Website
WebDriverManager Java Apache 2.0 Boni García https://github.com/bonigarcia/webdrivermanager

webdriver-manager JavaScript MIT Google https://www.npmjs.com/package/webdriver-manager

webdriver-manager Python Apache 2.0 Serhii Pirohov https://pypi.org/project/webdriver-manager

WebDriverManager.Net C# MIT Aliaksandr
Rasolka

https://github.com/rosolko/WebDriverManager.Net

webdrivers Ruby MIT Titus Fortner https://github.com/titusfortner/webdrivers

In this book, I recommend using WebDriverManager because it
automates the entire driver maintenance process (i.e., download,
setup, and maintenance). See Appendix B for further information
about automated and manual driver management.

Locator Tools
The Selenium WebDriver API provides different ways to locate web elements (see
Chapter 3): by attribute (id, name, or class), by link text (complete or partial), by tag
name, by CSS (Cascading Style Sheets) selector, or by XML Path Language (XPath).
Specific tools can help to identify and generate these locators. Table 1-4 shows some
of these tools.

Table 1-4. Locators tools summary

Name Type License Maintainer Website
Chrome DevTools Built-in browser

tool
Proprietary
freeware, based
on open source

Google https://developer.chrome.com/docs/devtools

Firefox Developer
Tools

Built-in browser
tool

MPL 2.0 Mozilla https://developer.mozilla.org/en-US/docs/Tools

Cropath Browser
extension

Freeware AutonomIQ https://autonomiq.io/deviq-chropath.html

SelectorsHub Browser
extension

Freeware Sanjay Kumar https://selectorshub.com

POM Builder Browser
extension

Freeware LogiGear
Corporation

https://pombuilder.com

Frameworks
In software engineering, a framework is a set of libraries and tools used as a concep‐
tual and technological base and support for software development. Selenium is the
foundation for frameworks that wrap, enhance, or complement its default features.
Table 1-5 contains some of these frameworks and libraries based on Selenium.

12 | Chapter 1: A Primer on Selenium

https://github.com/bonigarcia/webdrivermanager
https://www.npmjs.com/package/webdriver-manager
https://pypi.org/project/webdriver-manager
https://github.com/rosolko/WebDriverManager.Net
https://github.com/titusfortner/webdrivers
https://developer.chrome.com/docs/devtools
https://developer.mozilla.org/en-US/docs/Tools
https://autonomiq.io/deviq-chropath.html
https://selectorshub.com
https://pombuilder.com

Table 1-5. Testing frameworks and libraries based on Selenium

Name Language Description License Maintainer Website
CodeceptJS JavaScript Multi-backend testing

framework that models
browser interactions as
simple steps from a user
perspective

MIT Michael
Bodnarchuk

https://codecept.io

FluentSelenium Java Fluent API for Selenium
WebDriver

Apache 2.0 Paul Hammant https://github.com/Selenium
HQ/fluent-selenium

FluentLenium Java Website and mobile
automation framework to
create readable and
reusable WebDriver tests

Apache 2.0 FluentLenium
team

https://fluentlenium.com

Healenium Java Library for improving the
stability of Selenium tests
by using machine learning
algorithms to analyze web
and mobile web elements

Apache 2.0 Anna
Chernyshova
and Dmitriy
Gumeniuk

https://healenium.io

Helium Python High-level API based on
Selenium WebDriver

MIT Michael
Herrmann

https://github.com/mherrma
nn/selenium-python-helium

QAF (QMetry
Automation
Framework)

Java Test automation platform
for web and mobile
applications

MIT Chirag Jayswal https://qmetry.github.io/qaf

Lightning Java Lightweight Selenium
WebDriver client for Java

Apache 2.0 FluentLenium https://github.com/aerokube
/lightning-java

Nerodia Python Python port of the Watir
Ruby gem

MIT Lucas Tierney https://nerodia.readthedocs.i
o

Robot
Framework

Python,
Java, .NET,
and others

Generic automation
framework based on
human-readable test
cases

Apache 2.0 Robot
Framework
Foundation

https://robotframework.org

Selenide team Java Fluent, concise API for
Selenium WebDriver

MIT Selenide team https://selenide.org

SeleniumBase Python Browser automation
framework based on
WebDriver and pytest

MIT Michael Mintz https://seleniumbase.io

Watir (Web
Application
Testing in Ruby)

Ruby Gem library based on
WebDriver for automating
web browsers

MIT Titus Fortner http://watir.com

WebDriverIO JavaScript Test automation
framework based
WebDriver and Appium

MIT Christian
Bromann

https://webdriver.io

Nightwatch.js JavaScript Integrated end-to-end
testing framework based
on the W3C WebDriver

MIT Andrei Rusu https://nightwatchjs.org

Selenium Ecosystem | 13

https://codecept.io
https://github.com/SeleniumHQ/fluent-selenium
https://github.com/SeleniumHQ/fluent-selenium
https://fluentlenium.com
https://healenium.io
https://github.com/mherrmann/selenium-python-helium
https://github.com/mherrmann/selenium-python-helium
https://qmetry.github.io/qaf
https://github.com/aerokube/lightning-java
https://github.com/aerokube/lightning-java
https://nerodia.readthedocs.io
https://nerodia.readthedocs.io
https://robotframework.org
https://selenide.org
https://seleniumbase.io
http://watir.com
https://webdriver.io
https://nightwatchjs.org

Name Language Description License Maintainer Website
Applitools Java,

JavaScript,
C#, Ruby,
PHP, Python

Test automation
framework for visual user
interface regression and
A/B testing. It provides
SDKs for Selenium,
Appium, and others

Commercial Applitools team https://applitools.com

Katalon Studio Java,
Groovy

Test automation platform
leveraging Selenium
WebDriver, Appium, and
cloud providers

Commercial Katalon team https://www.katalon.com

TestProject Java, C#,
Python

Test automation platform
for web and mobile apps
built on top of Selenium
and Appium

Commercial TestProject
team

https://testproject.io

Browser Infrastructure
We can use Selenium WebDriver to control local browsers installed in the machine
running the WebDriver script. Also, Selenium WebDriver can drive remote web
browsers (i.e., those executed in other hosts). In this case, we can use Selenium Grid
to support the remote browser infrastructure. Nevertheless, this infrastructure can be
challenging to create and maintain.

Alternatively, we can use a cloud provider to outsource the responsibility for support‐
ing the browser infrastructure. In the Selenium ecosystem, a cloud provider is a
company or product that supplies managed services for automated testing.
These companies typically offer commercial solutions for web and mobile testing.
The users of a cloud provider request on-demand browsers of different types, ver‐
sions, and operating systems. Also, these providers typically offer additional services
for easing the testing and monitoring activities, such as access to session recordings
or analysis capabilities, to name a few. Some of the most relevant cloud providers for
Selenium nowadays are Sauce Labs, BrowserStack, LambdaTest, CrossBrowserTest‐
ing, Moon Cloud, TestingBot, Perfecto, or Testinium.

Another solution we can use to support the browser infrastructure for Selenium is
Docker. Docker is an open source software technology that allows users to pack and
run applications as lightweight, portable containers. The Docker platform has two
main components: the Docker Engine, a tool for creating and running containers, and
the Docker Hub, a cloud service for distributing Docker images. In the Selenium
domain, we can use Docker to pack and execute containerized browsers. Table 1-6
presents a summary of relevant projects using Docker in the Selenium ecosystem.

14 | Chapter 1: A Primer on Selenium

https://applitools.com
https://www.katalon.com
https://testproject.io
https://saucelabs.com
https://www.browserstack.com
https://www.lambdatest.com
https://crossbrowsertesting.com
https://crossbrowsertesting.com
https://aerokube.com/moon-cloud
https://testingbot.com
https://www.perfecto.io
https://testinium.com
https://www.docker.com
https://hub.docker.com

Table 1-6. Docker resources for Selenium

Name Description License Maintainer Website
docker-
selenium

Official Docker images for
Selenium Grid

Apache 2.0 Selenium
project

https://github.com/seleniumhq/docker-seleni
um

Selenoid Lightweight Golang
implementation of Selenium Hub
running browsers in Docker
(images available on Docker Hub)

Apache 2.0 Aerokube https://aerokube.com/selenoid

Moon Enterprise Selenium cluster that
use Docker and Kubernetes

Commercial Aerokube https://aerokube.com/moon

Callisto Open source Kubernetes-native
implementation of Selenium Grid

MIT Aerokube https://github.com/wrike/callisto

Community
Due to its collaborative nature, software development needs the organization and
interaction of many participants. In the open source domain, we can measure the
success of a project by the relevance of its community. Selenium is supported by a
large community of many different participants worldwide. Table 1-7 presents a sum‐
mary of several Selenium resources grouped into the following categories: official
documentation, development, support, and events.

Table 1-7. Selenium community resources

Category Description Website
Official documentation User guide https://www.selenium.dev/documentation

Blog https://www.selenium.dev/blog

Wiki https://github.com/seleniumhq/selenium/wiki

Ecosystem https://www.selenium.dev/ecosystem

Development Source code https://github.com/seleniumhq/selenium

Issues https://github.com/seleniumhq/selenium/issues

Governance https://www.selenium.dev/project

Support User group https://groups.google.com/group/selenium-users

Slack https://seleniumhq.slack.com

IRC https://webchat.freenode.net/#selenium

StackOverflow https://stackoverflow.com/questions/tagged/selenium

Reddit https://www.reddit.com/r/selenium

Events Conference https://www.selenium.dev/categories/conference

Meetups https://www.meetup.com/topics/selenium

Selenium Ecosystem | 15

https://github.com/seleniumhq/docker-selenium
https://github.com/seleniumhq/docker-selenium
https://aerokube.com/selenoid
https://aerokube.com/moon
https://github.com/wrike/callisto
https://www.selenium.dev/documentation
https://www.selenium.dev/blog
https://github.com/seleniumhq/selenium/wiki
https://www.selenium.dev/ecosystem
https://github.com/seleniumhq/selenium
https://github.com/seleniumhq/selenium/issues
https://www.selenium.dev/project
https://groups.google.com/group/selenium-users
https://seleniumhq.slack.com
https://webchat.freenode.net/#selenium
https://stackoverflow.com/questions/tagged/selenium
https://www.reddit.com/r/selenium
https://www.selenium.dev/categories/conference
https://www.meetup.com/topics/selenium

Software Testing Fundamentals
Software testing (or simply testing) consists of the dynamic evaluation of a piece of
software, called System Under Test (SUT), through a finite set of test cases (or simply
tests), giving a verdict about it. Testing implies the execution of SUT using specific
input values to assess the outcome or expected behavior.

At first glance, we distinguish two separate categories of software testing: manual and
automated. On the one hand, in manual testing, a person (typically a software engi‐
neer or the final user) evaluates the SUT. On the other hand, in automated testing, we
use specific software tools to develop tests and control their execution against the
SUT. Automated tests allow the early detection of defects (usually called bugs) in the
SUT while providing a large number of additional benefits (e.g., cost savings, fast
feedback, test coverage, or reusability, to name a few). Manual testing can also be a
valuable approach in some cases, for example, in exploratory testing (i.e., human test‐
ers freely investigate and evaluate the SUT).

There is no universal classification for the numerous forms of test‐
ing presented in this section. These concepts are subject to contin‐
uous evolution and debate, just like software engineering. Consider
it a proposal that can fit into a large number of projects.

Levels of Testing
Depending on the size of the SUT, we can define different levels of testing. These levels
define several categories in which software teams divide their testing efforts. In this
book, I propose a stacked layout to represent the different levels (see Figure 1-5). The
lower levels of this structure represent the tests aimed at verifying small pieces of soft‐
ware (called units). As we ascend in the stack, we find other tiers (e.g., integration,
system, etc.) in which the SUT integrates more and more components.

Figure 1-5. Stack representation of the different levels of testing

16 | Chapter 1: A Primer on Selenium

The lowest level of this stack is unit testing. At this level, we assess individual units of
software. A unit is a particular observable element of behavior. For instance, units are
typically methods or classes in object-oriented programming and functions in func‐
tional programming. Unit testing aims to verify that each unit behaves as expected.
Automated unit tests usually run very fast since each test executes a small amount of
code in isolation. To achieve this isolation, we can use test doubles, pieces of software
that replace the dependent components of a given unit. For example, a popular type
of test double in object-oriented programming is the mock object. A mock object
mimics an actual object using some programmed behavior.

The next level in Figure 1-5 is integration testing. At this level, different units are com‐
posed to create composite components. Integration testing aims to assess the interac‐
tion between the involved units and expose defects in their interfaces.

Then, at the system testing and end-to-end (E2E) levels, we test the software system as
a whole. We need to deploy the SUT and verify its high-level features to carry out
these levels. The difference between system/end-to-end and integration testing is that
the former involves all the system components and the final user (typically imperso‐
nated). In other words, system and end-to-end testing assess the SUT through the
User Interface (UI). This UI can be graphical (GUI) or nongraphical (e.g., text-based
or other types).

The Test Pyramid
The test pyramid is a classical representation of the levels of testing. Mike Cohn first
coined this concept in 2009. In his original conception, Cohn recommended a large
number of unit tests as the basis of testing efforts. The following levels (e.g., integra‐
tion tests) are less numerous in each stage but typically more expensive (in terms of
development and maintenance effort) and slow (in terms of execution time). This
proposal might be impractical for many projects because unit tests are not always
from a comprehensive testing suite. For this reason, other authors define different
shapes for the levels of testing, such as the testing trophy (in which the intermediate
layer, i.e., the integration test, is the largest). Since the relevance of the different test
categories can vary from one project to another, I use a basic stack structure to repre‐
sent the different levels of testing.

Figure 1-6 illustrates the difference between system and end-to-end testing. As you
can see, on the one hand, end-to-end testing involves the software system and its
dependent subsystems (e.g., database or external services). On the other hand, system
testing comprises only the software system, and these external dependencies are typi‐
cally mocked.

Software Testing Fundamentals | 17

Figure 1-6. Component-based representation of the different levels of testing

Acceptance testing is the top tier of the presented stack. At this level, the final user par‐
ticipates in the testing process. The objective of acceptance testing is to decide
whether the software system meets end-user expectations. As you can see in
Figure 1-6, like end-to-end testing, acceptance testing validates the whole system and
its dependencies. Therefore, acceptance tests also use the UI to carry out the SUT
validation.

The primary purpose of Selenium WebDriver is to implement end-
to-end tests. Nevertheless, we can use WebDriver to carry out sys‐
tem testing when mocking the backend calls made by the website
under test. Moreover, we can use Selenium WebDriver in conjunc‐
tion with a Behavior-Driven Development (BDD) tool to imple‐
ment acceptance tests (see Chapter 9).

18 | Chapter 1: A Primer on Selenium

Verification and Validation
The down levels of the test stack we have seen (unit, integration, system, and end-to-
end testing) belong to development testing. Development testing is a process carried
out by the team that produces the software system (i.e., developers, testers, etc.) dur‐
ing the construction phase of the software development lifecycle. Development test‐
ing is a type of verification since we assess that the software meets its stated functional
and nonfunctional requirements (i.e., its specification). Using the classical definition
stated by Barry Boehm in 1984, verification allows answering the following question:
“Are we building the product right?”

The top level of the test stack represented in Figure 1-5 (i.e., acceptance testing)
belongs to user testing since it involves the final user in the testing process. Accept‐
ance testing is a type of validation because its objective is to prove the software system
meets end-user expectations. Validation is a more general process than verification
since the system specification does not always reflect the user’s real wishes or needs.
Thus, according to Boehm, validation allows answering the question “Are we building
the right product?”

Types of Testing
Depending on the strategy for designing test cases, we can implement different types
of tests. The two principal types of testing are:

Functional testing (also known as behavioral or closed-box testing)
Evaluates the compliance of a piece of software with the expected behavior (i.e.,
its functional requirements).

Structural testing (also known as clear-box testing)
Determines if the program-code structure is faulty. To that aim, testers should
know the internal logic of a piece of software.

The difference between these testing types is that functional tests are responsibility-
based, while structural tests are implementation-based. Both types can be performed
at any test level (unit, integration, system, end-to-end, or acceptance). Nevertheless,
structural tests are commonly done at the unit or integration level since these levels
enable more direct control of the code execution flow.

Black-box and white-box testing are other names for functional and
structural testing, respectively. Nevertheless, these designations are
not recommended since the tech industry is trying to adopt more
inclusive terms and use neutral terminology instead of potentially
harmful language.

Software Testing Fundamentals | 19

There are different flavors of functional testing. For example:

UI testing (known as GUI testing when the UI is graphical)
Evaluates if the visual elements of an application meet the expected functionality.
Note that UI testing is different from the system and end-to-end testing levels
since the former tests the interface itself, and the latter evaluates the whole sys‐
tem through the UI.

Negative testing
Evaluates the SUT under unexpected conditions (e.g., expected exceptions). This
term is the counterpart of the regular functional testing (sometimes called posi‐
tive testing), in which we assess if the SUT behaves as expected (i.e., its happy
path).

Cross-browser testing
This is specific for web applications. It aims to verify the compatibility of websites
and applications in different web browsers (types, versions, or operating
systems).

A third miscellaneous testing type, nonfunctional testing, includes testing strategies
that assess the quality attributes of a software system (i.e., its nonfunctional require‐
ments). Common methods of nonfunctional testing include, but are not limited to:

Performance testing
Assesses different metrics of software systems, such as response time, stability,
reliability, or scalability. The objective of performance testing is not finding bugs
but finding system bottlenecks. There are two common subtypes of performance
testing:

Load testing
Increases the usage on the system by simulating multiple concurrent users to
verify if it can operate in the defined boundaries.

Stress testing
Exercises a system beyond its operational capacity to identify the actual lim‐
its at which the system breaks.

Security testing
Tries to evaluate security concerns, such as confidentiality (disclosure of infor‐
mation protection), authentication (ensuring the user identity), or authorization
(determining user rights and privileges), among others.

Usability testing
Evaluates how user-friendly a software application is. This assessment is also
called User eXperience (UX) testing. A subtype of usability testing is:

20 | Chapter 1: A Primer on Selenium

A/B testing
Compares different variations of the same application to determine which
one is more effective for its end users.

Accessibility testing
Evaluates if a system is usable by people with disabilities.

We use Selenium WebDriver primarily to implement functional
tests (i.e., interacting with a web application UI to assess the appli‐
cation behavior). It is unlikely to use WebDriver to implement
structural tests. In addition, although it is not its principal usage,
we can use WebDriver to implement nonfunctional tests, e.g., for
load, security, accessibility, or localization (assessment of specific
locale settings) testing (see Chapter 9).

Testing Methodologies
The software development lifecycle is the set of activities, actions, and tasks required to
create software systems in software engineering. The moment at which software engi‐
neers design and implement test cases in the overall development lifecycle depends
on the specific development process (such as iterative, waterfall, or agile, to name a
few). Two of the most relevant testing methodologies are:

Test Driven Development (TDD)
TDD is a methodology in which we design and implement tests before the actual
software design and implementation. At the beginning of the 21st century, TDD
became popular with the rise of agile software development methodologies, such
as Extreme Programming (XP). In TDD, a developer first writes an (initially
failing) automated test for a given feature. Then, the developer creates a piece of
code to pass that test. Finally, the developer refactors the code to achieve or
improve readability and maintainability.

Test Last Development (TLD)
TLD is a methodology in which we design and implement tests after implement‐
ing the SUT. This practice is typical in traditional software development pro‐
cesses, such as waterfall (sequential), incremental (multi-waterfall), spiral (risk-
oriented multi-waterfall), or Rational Unified Process (RUP).

Another relevant testing methodology is Behavior-Driven Development (BDD). BDD
is a testing practice derived from TDD, and consequently, we design tests at the early
stages of the software development lifecycle in BDD. To that aim, conversations occur
between the final user and the development team (typically with the project leader,
manager, or analysts). These conversations formalize a common understanding of the
desired behavior and the software system. As a result, we create acceptance tests in
terms of one or more scenarios following a Given-When-Then structure:

Software Testing Fundamentals | 21

Given
Initial context at the beginning of the scenario

When
Event that triggers the scenario

Then
Expected outcome

TLD is a common practice used to implement Selenium Web‐
Driver. In other words, developers/testers do not implement a
WebDriver test until the SUT is available. Nevertheless, different
methodologies are also possible. For instance, BDD is a common
approach when using WebDriver with Cucumber (see Chapter 9).

Closely related to the domain of testing methodologies, we find the concept of Con‐
tinuous Integration (CI). CI is a software development practice where members of a
software project build, test, and integrate their work continuously. Grady Booch first
coined the term CI in 1991. Now it is a popular strategy to create software.

As Figure 1-7 shows, CI has three separate stages. First, we use a source code reposi‐
tory, a hosting facility to store and share the source code of a software project. We
typically use a version control system (VCS) to manage this repository. A VCS is a tool
that keeps track of the source code, who made each change, and when (sometimes
called patch).

Figure 1-7. CI generic process

22 | Chapter 1: A Primer on Selenium

Git, initially developed by Linus Torvalds, is the preferred VCS today. Other alterna‐
tives are a concurrent versions system (CVS) or Subversion (SVN). On top of Git, sev‐
eral code hosting platforms (such as GitHub, GitLab, or Bitbucket) provide
collaborative cloud repository hosting services for developing, sharing, and maintain‐
ing software.

Developers synchronize a local repository (or simply, repo) copy in their local envi‐
ronments. Then, they do the coding work using that local copy, committing new
changes to the remote repository (typically daily). The basic idea of CI is that every
commit triggers the build and test of the software with the new changes. The test
suite executed to assess that a patch does not break the build is called a regression test.
A regression suite can contain tests of different types, including unit, integration,
end-to-end, etc.

When the number of tests is too large for regression testing, we typically choose only
a part of the relevant tests from the whole suite. There are different strategies to select
these tests, for instance, smoke testing (i.e., tests that ensure the critical functionality)
or sanity testing (i.e., tests that evaluate the basic functionality). Lastly, we can execute
the complete suite as a scheduled task (typically nightly).

We need to use a server-side infrastructure called a build server to implement a CI
pipeline. The build server usually reports a problem to the original developer when
the regression tests fail. Table 1-8 provides a summary of several build servers.

Table 1-8. Build servers

Name Description License Maintainer Website
Bamboo Easy use with Jira (issue

tracker) and Bitbucket
Commercial Atlassian https://www.atlassian.com/software/bamboo

GitHub
Actions

Integrated build server in
GitHub

Free for public
repositories

Microsoft https://github.com/features/actions

GitLab
CI/CD

Integrated build server in
GitLab

Free for public
repositories

GitLab https://docs.gitlab.com/ee/ci

Jenkins Open source automation
server

MIT Jenkins team https://www.jenkins.io

I use a GitHub repository (https://github.com/bonigarcia/selenium-
webdriver-java) to publish and maintain the test examples presen‐
ted in this book. GitHub Actions is the build server for this repo
(see Chapter 2).

Software Testing Fundamentals | 23

https://www.atlassian.com/software/bamboo
https://github.com/features/actions
https://docs.gitlab.com/ee/ci
https://www.jenkins.io
https://github.com/bonigarcia/selenium-webdriver-java
https://github.com/bonigarcia/selenium-webdriver-java

We can extend a typical CI pipeline in two ways (see Figure 1-8):

Continuous Delivery (CD)
After CI, the build server deploys the release to a staging environment (i.e., a rep‐
lica of a production environment for testing purposes) and executes the automa‐
ted acceptance tests (if any).

Continuous Deployment
The build server deploys the software release to the production environment as
the final step.

Figure 1-8. Continuous Integration, Delivery, and Deployment pipeline

Close to CI, the term DevOps (development and operations) has gained momentum.
DevOps is a software methodology that promotes communication and collaboration
between different teams in a software project to develop and deliver software
efficiently. These teams include developers, testers, QA (quality assurance), opera‐
tions (infrastructure), etc.

Test Automation Tools
We need to use some tooling to implement, execute, and control automated tests
effectively. One of the most relevant categories for testing tools is the unit testing
framework. The original framework in the unit testing family (also known as xUnit) is
SmalltalkUnit (or SUnit). SUnit is a unit test framework for the Smalltalk language
created by Kent Beck in 1999. Erich Gamma ported SUnit to Java, creating JUnit.
Since then, JUnit has been very popular, inspiring other unit testing frameworks.
Table 1-9 summarizes the most relevant unit testing frameworks in different
languages.

24 | Chapter 1: A Primer on Selenium

Table 1-9. Unit testing frameworks

Name Language Description License Maintainer Website
JUnit Java Reference implementation of

xUnit family
EPL JUnit team https://junit.org

TestNG Java Inspired by JUnit and NUnit,
including extra features

Apache
2.0

Cedric Beust https://testng.org

Mocha JavaScript Test framework for Node.js and
the browser

MIT OpenJS
Foundation

https://mochajs.org

Jest JavaScript Focused on simplicity with a
focus on web applications

MIT Facebiij https://jestjs.io

Karma JavaScript Allows you to execute JavaScript
tests in web browsers

MIT Karma team https://karma-runner.github.io

NUnit .Net Unit testing framework for
all .Net languages (C#, Visual
Basic, and F#)

MIT .NET
Foundation

https://nunit.org

unittest Python Unit testing framework included
as a standard library as of Python
2.1

PSF
License

Python
Software
Foundation

https://docs.python.org/library/unitt
est.html

minitest Ruby Complete suite of testing utilities
for Ruby

MIT Seattle Ruby
Brigade

https://github.com/settlers/minitest

An important common characteristic of the xUnit family is the test structure, com‐
posed of four phases (see Figure 1-9):

Setup
The test case initializes the SUT to exhibit the expected behavior.

Exercise
The test case interacts with the SUT. As a result, the test gets an outcome from
the SUT.

Verify
The test case decides if the obtained outcome from the SUT is as expected. To
that aim, the test contains one or more assertions. An assertion (or predicate) is a
boolean-value function that checks if an expected condition is true. The execu‐
tion of the assertions generates a test verdict (typically, pass or fail).

Teardown
The test case puts the SUT back into the initial state.

Software Testing Fundamentals | 25

https://junit.org
https://testng.org
https://mochajs.org
https://jestjs.io
https://karma-runner.github.io
https://nunit.org
https://docs.python.org/library/unittest.html
https://docs.python.org/library/unittest.html
https://github.com/settlers/minitest

Figure 1-9. Unit test generic structure

We can use unit testing frameworks in conjunction with other
libraries or utilities to implement any test type. For example, as
explained in Chapter 2, we use JUnit and TestNG to embed the call
to the Selenium WebDriver API, implementing end-to-end tests
for web applications.

The stages of setup and teardown are optional in a unit test case. Although it is not
strictly mandatory, verifying is highly recommended. Even if unit testing frameworks
include capabilities to implement assertions, it is common to incorporate third-party
assertions libraries. These libraries aim to improve the test code’s readability by pro‐
viding a rich set of fluent assertions. In addition, these libraries offer enhanced error
messages to help testers understand the cause of a failure. Table 1-10 contains a sum‐
mary of some of the most relevant assertion libraries for Java.

Table 1-10. Assertion libraries for Java

Name Description License Maintainer Website
AssertJ Fluent assertions Java library Apache 2.0 AssertJ team https://assertj.github.io/doc

Hamcrest Java library of matchers aimed to create flexible
assertions

BSD Hamcrest team http://hamcrest.org

Truth Fluent assertions for Java and Android Apache 2.0 Google https://truth.dev

26 | Chapter 1: A Primer on Selenium

https://assertj.github.io/doc
http://hamcrest.org
https://truth.dev

As you can see in Figure 1-9, the SUT usually can query another component, named
the Depended-On Component (DOC). In some cases (e.g., at the unit or system testing
level), we might want to isolate the SUT from the DOC(s). We can find a wide variety
of mock libraries to achieve this isolation.

Table 1-11 shows a comprehensive summary of some of these mock libraries for Java.

Table 1-11. Mock libraries for Java

Name Level Description License Maintainer Website
EasyMock Unit It allows mocking objects for unit

testing using Java annotations
Apache EasyMock team https://easymock.org

Mockito Unit Mocking Java library for mock
creation and verification

MIT Mockito team https://site.mockito.org

JMockit Integration It allows out-of-container
integration testing for Java EE and
Spring-based apps

Open JMockit team https://jmockit.github.io

MockServer System Mocking library for any system
integrated via HTTP or HTTPS with
Java clients

Apache
2.0

James Bloom https://www.mock-server.com

WireMock System Tool for simulating HTTP-based
services

Apache
2.0

Tom Akehurst https://wiremock.org

The last category of testing tools we analyze in this section is BDD, a development
process that creates acceptance tests. There are plenty of alternatives to implement
this approach. For instance, Table 1-12 shows a condensed summary of relevant BDD
frameworks.

Table 1-12. BDD frameworks

Name Language Description License Maintainer Website
Cucumber Ruby, Java,

JavaScript,
Python

Testing framework to
created automated
acceptance tests following
a BDD approach

MIT SmartBear
Software

https://cucumber.io

FitNesse Java Standalone collaborative
wiki and acceptance
testing framework

CPL FitNesse team http://fitnesse.org

JBehave Java, Groovy,
Kotlin, Ruby,
Scala

BDD framework for all JVM
languages

BSD-3-
Clause

JBehave team https://jbehave.org

Jasmine JavaScript BDD framework for
JavaScript

MIT Jasmine team https://jasmine.github.io

Capybara Ruby Web-based acceptance
test framework that
simulates scenarios for
user stories

MIT Thomas
Walpole

https://teamcapybara.github.io/ca
pybara

Software Testing Fundamentals | 27

https://easymock.org
https://site.mockito.org
https://jmockit.github.io
https://www.mock-server.com
https://wiremock.org
https://cucumber.io
http://fitnesse.org
https://jbehave.org
https://jasmine.github.io
https://teamcapybara.github.io/capybara
https://teamcapybara.github.io/capybara

Name Language Description License Maintainer Website
Serenity
BDD

Java,
Javascript

Automated acceptance
testing library

Apache
2.0

Serenity BDD
team

https://serenity-bdd.info

Summary and Outlook
Selenium has come a long way since its inception in 2004. Many practitioners con‐
sider it the de facto standard solution to develop end-to-end tests for web applica‐
tions, and it is used by thousands of projects worldwide. In this chapter, you have
seen the foundations of the Selenium project (made up of WebDriver, Grid, and
IDE). In addition, Selenium has a rich ecosystem and active community. WebDriver
is the heart of the Selenium project, and it is a library that provides an API to control
different web browsers (e.g., Chrome, Firefox, Edge, etc.) programmatically.
Table 1-13 contains a comprehensive overview of the primary and secondary uses of
Selenium WebDriver.

Table 1-13. Selenium WebDriver primary and secondary usages

Primary Secondary (other usages)
Purpose Automated testing Web scraping, web-based administration tasks

Test level End-to-end testing System testing (mocking backend calls)
Acceptance testing (e.g., using with Cucumber)

Test type Functional testing (ensuring expected behavior)
Cross-browser testing (compatibility in different
web browsers)
Regression testing (ensuring build after each
commit in CI)

Nonfunctional testing (e.g., load, security,
accessibility, or localization)

Test methodology TLD (implementing tests when SUT is available) BDD (defining user scenarios at early development
stages)

In the next chapter, you discover how to set up a Java project using Maven or Gradle
as build tools. This project will contain end-to-end tests for web applications using
JUnit and TestNG as the unit testing frameworks and calls to the Selenium Web‐
Driver API. In addition, you will learn how to control different web browsers (e.g.,
Chrome, Firefox, or Edge) with a basic test case (the Selenium WebDriver’s version of
the classic hello world).

28 | Chapter 1: A Primer on Selenium

https://serenity-bdd.info

CHAPTER 2

Preparing for Testing

This chapter aims to implement your first end-to-end test using Selenium WebDriver
and the Java language. To do that, we first review the technical requirements in terms
of previous knowledge, hardware, and software. Second, this chapter provides an
overview for setting up a Java project that includes Selenium WebDriver tests. You
can use a build tool like Maven or Gradle to ease the project setup. Finally, you will
learn to implement a basic end-to-end test with Selenium WebDriver, i.e., a hello
world test. We will implement this test in several flavors, using different web browsers
(such as Chrome, Edge, or Firefox) and unit testing frameworks (JUnit and TestNG).
Remember that every code example in this book is available in an open source Git‐
Hub repository. Thus, you can reuse the content and configuration of this repository
as the foundation for your own tests.

Requirements
The first requirement to start using Selenium WebDriver with Java is comprehending
the Java language and object-oriented programming. It is not necessary to be an
expert, but basic knowledge about it is required. Then, you can use Selenium Web‐
Driver in any mainstream operating system: Windows, Linux, or macOS. Therefore,
you can select the computer type you prefer. In principle, there are no specific
requirements about its hardware in terms of memory, CPU, hard disk, etc., so any
mid-tier computer will do.

29

https://github.com/bonigarcia/selenium-webdriver-java
https://github.com/bonigarcia/selenium-webdriver-java

Java Virtual Machine
Next, you need a Java Virtual Machine (JVM) installed on your computer. There are
two types of distributions for the JVM. The first option is the Java Runtime Environ‐
ment (JRE), which includes the JVM and the Java standard API. The second option is
the Java Development Kit (JDK), which is the JRE plus a Software Development Kit
(SDK) for Java (such as the javac compiler and other tools). Since we are developing
in Java, I recommend using JDK (although some IDEs also incorporate an SDK for
Java). For the Java version, I recommend using at least JDK 8 since it is the long-term
support version commonly supported in many Java projects at the time of this
writing.

Text Editor or IDE
To code our Java tests, we need a text editor or IDE. IDEs provide an excellent experi‐
ence for development because they have a full-fledged environment (for coding,
running, debugging, autocompletion, etc.). Nevertheless, you can get similar practice
using any text editor you like, used in conjunction with command-line tools (for run‐
ning, debugging, etc.). Overall, it depends on your personal preferences to choose
one or another. Some popular alternatives for text editors are Sublime Text, Atom,
Notepad++, or Vim, among others. IDEs include Eclipse, IntelliJ IDEA, NetBeans, or
Visual Studio Code.

Browsers and Drivers
An initial way to carry out automation with Selenium WebDriver is to use local
browsers. I consider the following browsers for this book: Chrome, Edge, and Firefox.
I refer to them as main browsers for several reasons. First, they are very popular
worldwide, and because we are testing web applications with Selenium WebDriver,
we want to use the same browser as our potential users. Second, these browsers are
evergreen (i.e., they upgrade themselves automatically). Third, these browsers are
available for the major operating systems: Windows, Linux, and macOS (unlike
Safari, which is also a popular browser but is only available on macOS). Lastly, these
browsers are available in the Continuous Integration (CI) environment used in the
GitHub repository (i.e., GitHub Actions).

The last requirement for controlling web browsers with Selenium WebDriver is the
driver binaries: chromedriver (for Chrome), msedgedriver (for Edge), and gecko‐
driver (for Firefox). As discussed in Chapter 1, driver management involves
three steps: download, setup, and maintenance. To avoid the potential problems
explained in that chapter, I strongly recommend automating this process with
WebDriverManager.

30 | Chapter 2: Preparing for Testing

https://www.sublimetext.com
https://atom.io
https://notepad-plus-plus.org
https://www.vim.org
https://www.eclipse.org
https://www.jetbrains.com/idea
https://netbeans.apache.org
https://code.visualstudio.com
https://bonigarcia.dev/webdrivermanager

Appendix B provides fine-grained details about the automated
driver management process performed by WebDriverManager. In
addition, and just in case you need it for some reason, this appen‐
dix explains how to carry out the driver management manually.

Build Tools
Another important component is the build tool. Build tools are software utilities used
to automate the creation of executable applications from source code. These tools
ease project management in terms of dependencies management, compilation, pack‐
aging, test execution, and deployment. Overall, build tools are a convenient way to
automate the development of software projects, both in build servers (e.g., GitHub
Actions) and developer machines. Therefore, I highly recommend using a build tool
to set up your project. The alternatives we cover in this book are:

Maven
An open source build automation tool maintained by the Apache Software Foun‐
dation. It is used primarily for Java projects, although it also supports other lan‐
guages such as C#, Ruby, or Scala.

Gradle
Another open source build automation tool for software development. It
supports Java and other languages such as Kotlin, Groovy, Scala, C/C++, or
JavaScript.

The recommended versions are Maven 3+ and Gradle 6+. For completeness, I use
both build tools in the example repository. Again, the final choice to use one or
another depends on your preferences.

If you plan to use an IDE for developing and running your tests, a
build tool is not strictly necessary. Nevertheless, I recommend
installing at least one of these tools in your computer to replicate
the environment typically used in build servers (e.g., Jenkins,
GitHub Actions, etc.).

Optional Software
In addition to the software already explained, some other programs are convenient to
make the most of this book. First, you can use Git for source code management. Since
the test examples presented in this book are available on GitHub, you can use Git to
fork (or clone) and update this repository.

The second optional tool is Docker. In this book, I show you how to use Docker to
execute containerized browsers (see Chapter 6). For this reason, I strongly

Requirements | 31

https://maven.apache.org
https://gradle.org
https://git-scm.com
https://www.docker.com

recommend you install a Docker Engine on your computer (it is available for Linux,
macOS, and Windows 10).

Finally, you can use different web browsers if you need them. In addition to the main
browsers (Chrome, Edge, and Firefox), it is possible to use other browsers with Sele‐
nium WebDiver, such as Safari in macOS, or Opera, Chromium, and HtmlUnit (a
headless browser, i.e., GUI-less browser) in any operating system.

Legacy Browsers
In addition to the browsers already presented, you can use even more browsers with
Selenium WebDriver. However, I do not recommend these browsers since they are
deprecated and not maintained anymore. These browsers are:

Internet Explorer
Microsoft’s web browser for Windows systems, first released in 1995 and discon‐
tinued in 2022

PhantomJS
Headless browser, first released in 2011 and discontinued in 2018

Project Setup
You can find all the code examples of this book in a GitHub repository. This reposi‐
tory is open source, released under the terms of the Apache 2.0 license. The reposi‐
tory has multiple aims. First, it is convenient to group all the examples in a single site.
Second, you can use its setup (Maven or Gradle) as a skeleton for your projects.

The following subsections describe the general requirements to
create a Java project containing Selenium WebDriver tests. Appen‐
dix C provides low-level details about the configuration of the
examples repositories.

Project Layout
The project layout is the directory structure used to store the different assets of a soft‐
ware project (e.g., source code, binary files, static resources, and so on). Maven and
Gradle use an equivalent layout for Java projects. We can execute the examples repos‐
itory with both build tools, thanks to this.

32 | Chapter 2: Preparing for Testing

https://www.apple.com/safari
https://www.opera.com
https://www.chromium.org
https://htmlunit.sourceforge.io
https://github.com/bonigarcia/selenium-webdriver-java

As illustrated in Figure 2-1, the following set of folders (labeled as scaffolding folders)
are identical in both build tools:

src/main/java

Application source code (i.e., Java files)

src/main/resources

Application resources files (i.e., properties, configuration files, etc.)

src/test/java

Test source code (i.e., Java files used for testing)

src/test/resources

Test resources files (i.e., additional assets used for testing)

Figure 2-1. Project layout in Maven and Gradle

Project Setup | 33

The rest of the project layout is different in both build tools. The first difference is the
configuration file. On the one hand, this file is unique and called pom.xml (Project
Object Model) in Maven. On the other hand, there are two files in Gradle for configu‐
ration, called settings.gradle and build.gradle. The second difference between
Maven and Gradle is the output folder. In both cases, the build tools created this
folder to save the resulting build (i.e., compiled classes, resulting packaged files, etc.).
The name of this folder is target in Maven and build in Gradle. Finally, Gradle con‐
tains a set of folders and files for the so-called Gradle wrapper. This wrapper is a
script file (called gradlew for Unix-like systems and gradlew.bat for Windows) that
provides the following benefits:

• Build a project without installing Gradle on the local machine
• Require use of a given version (which can be different from the locally installed

instance of Gradle)
• Upgrade to a new version easily by changing the wrapper artifacts (in folder
gradle/wrapper)

As of version 4, Maven has adopted the wrapper concept using the mvnw script.

It is beyond the scope of this book to explain all the features pro‐
vided by Maven and Gradle. Nevertheless, you can find more infor‐
mation about their build lifecycle and typical commands in
Appendix C. For further information, consider reading the official
Maven and Gradle documentation.

Dependencies
The dependencies of a software project are the required libraries or plug-ins. Among
other features, build tools enable the automated management of the project depen‐
dencies. To that aim, we need to specify the coordinates of such dependencies in the
project configuration file (see the following subsections for specifics on Maven and
Gradle). The coordinates of a Java project are a group of three labels that univocally
identify this project (e.g., a library, plug-in, etc.), namely:

groupId

Organization, company, person, etc., that created the project.

artifactId

Unique name that identifies the project.

version

Particular release of the project. By default, I recommend you use the latest ver‐
sion of every release.

34 | Chapter 2: Preparing for Testing

https://maven.apache.org/guides
https://docs.gradle.org

Semantic Versioning
A popular way to select a project version is Semantic Versioning, also called SemVer.
According to the SemVer manifesto, a release has three parts separated with dots, i.e.,
MAJOR.MINOR.PATCH. In a nutshell, MAJOR identifies incompatible changes, MINOR iden‐
tifies backward-compatible changes, and PATCH identifies bug fixes.

This section explains the Java dependencies I use in the examples repository. First, of
course, we need Selenium WebDriver to carry out browser automation. This depend‐
ency is the only one strictly mandatory. Then, I recommend using additional depen‐
dencies for automated driver management utility, unit testing framework, fluent
assertions, and logging. The remainder of this section explains the motivation and
basic use of each of these utilities.

Selenium WebDriver

One of the most relevant concepts of Selenium WebDriver is the WebDriver hierar‐
chy, which is a collection of classes aimed at controlling different web browsers. As
you can see in Figure 2-2, this hierarchy follows the object-oriented programming
paradigm. On the top, we find the WebDriver interface, the parent of the whole struc‐
ture. The lower part of the hierarchy corresponds to Java classes that drive single
browsers. For instance, we need to use an instance of the class ChromeDriver to con‐
trol a local Chrome browser. Table 2-1 shows a comprehensive summary of the main
classes of the WebDriver hierarchy and their corresponding target browsers.

Table 2-1. Description of the WebDriver hierarchy

Package Class Browser
org.openqa.selenium.chrome ChromeDriver Chrome

org.openqa.selenium.edge EdgeDriver Edge

org.openqa.selenium.firefox FirefoxDriver Firefox

org.openqa.selenium.safari SafariDriver Safari

org.openqa.selenium.opera OperaDriver Opera

org.openqa.selenium.ie InternetExplorerDriver Internet Explorer

org.openqa.selenium.remote RemoteWebDriver Remote browsers (see Chapter 6)

Project Setup | 35

https://semver.org

Figure 2-2. Hierarchy of the WebDriver object

Automated driver management
It is mandatory to resolve the corresponding driver before instantiating an object of
the WebDriver hierarchy. For example, to control Chrome with ChromeDriver, we
first need to have installed this browser on the local machine. Second, we need to
manage chromedriver. To avoid the potential problems related to manual driver man‐
agement (see Chapter 1), I recommend carrying out the whole driver management
process (download, setup, and maintenance) in an automated manner. Concerning
Java, the reference implementation is WebDriverManager, a Selenium WebDriver
helper library that allows automated driver management. This section explains how
to use WebDriverManager as a Java dependency.

Once the WebDriverManager dependency is resolved in our project (see Appendix C
for the configuration details), we can use the WebDriverManager API to manage
drivers. This API provides a set of singletons (called managers) to download, set up,
and maintain drivers. These singletons are accessible through the WebDriverManager
class. For instance, we need to invoke the method chromedriver() to manage the
driver required by Chrome, i.e., chromedriver, as follows:

WebDriverManager.chromedriver().setup();
WebDriver driver = new ChromeDriver();

36 | Chapter 2: Preparing for Testing

https://bonigarcia.dev/webdrivermanager

Table 2-2 summarizes the basic WebDriverManager calls for all the supported brows‐
ers. In addition to these basic calls (i.e., the method setup()), WebDriverManager
exposes a fluent API for advanced configuration. See Appendix B for more details
about the WebDriverManager methodology, configuration capabilities, and other
uses, such as a command-line interface tool (from the shell), as a server (using a
RESTlike [REpresentational State Transfer] API), as an agent (using Java instrumen‐
tation), or as a Docker container.

Table 2-2. WebDriverManager basic calls

WebDriverManager basic call Browser Driver
WebDriverManager.chromedriver().setup(); Chrome chromedriver

WebDriverManager.edgedriver().setup(); Edge msedgedriver

WebDriverManager.firefoxdriver().setup(); Firefox geckodriver

WebDriverManager.operadriver().setup(); Opera operadriver

WebDriverManager.chromiumdriver().setup(); Chromium chromedriver

WebDriverManager.iedriver().setup(); Internet Explorer IEDriverServer

Unit testing frameworks
As explained in Chapter 1, unit testing frameworks are the basis for creating different
types of tests. This book will teach you how to implement end-to-end tests for web
applications using Selenium WebDriver. Hence, I suggest embedding the Selenium
WebDriver calls within tests created with a particular unit testing framework. The
alternative I recommend is one of these options: JUnit 4, JUnit 5 (alone or in con‐
junction with Selenium-Jupiter, which is an extension for Selenium WebDriver), or
TestNG. The following subsections provide more details about these alternatives. My
advice is to focus on the unit testing framework and the build tool you prefer to con‐
tinue practicing with the examples presented in the rest of the book.

JUnit 4. JUnit is a unit testing framework for Java created by Erich Gamma and Kent
Beck in 1999. It is considered the de facto standard framework for developing tests in
Java. In JUnit, a test is a method within a Java class used for testing. As of JUnit 4, Java
annotations are the building blocks for developing JUnit tests. The fundamental
annotation of JUnit 4 is @Test since it allows identifying the method(s) that contain
the test logic (i.e., the code used to exercise and verify a piece of software). In addi‐
tion, there are other annotations to identify the methods used for the setup (i.e., what
happens before the tests) and the teardown (i.e., what happens after the tests).

• @BeforeClass is executed once before all tests.
• @Before is executed before each test.

Project Setup | 37

• @After is executed after each test.
• @BeforeClass is executed once after all tests.

Figure 2-3 shows a graphical representation of the basic test lifecycle in JUnit 4.

Figure 2-3. JUnit 4 test lifecycle

JUnit 5. Due to several limitations in JUnit 4 (such as monolithic architecture or
impossible-to-compose JUnit runners), the JUnit team released a new major version
(i.e., JUnit 5) in 2017. JUnit has been redesigned entirely in version 5, following a
modular architecture consisting of three components (see Figure 2-4). The first com‐
ponent is the JUnit Platform, the foundation of the whole framework. The goal of the
JUnit Platform is twofold:

• It allows the discovery and execution (sequential or parallel) of tests in the JVM
through the test launcher API. This API is typically used by programmatic clients
such as build tools and IDEs.

• It defines the test engine API for running tests on the JUnit Platform. This API is
typically used by frameworks that provide programming models for testing.

38 | Chapter 2: Preparing for Testing

Figure 2-4. JUnit 5 architecture

Thanks to the test engine API, third-party test frameworks can execute tests on top of
the JUnit Platform. Some examples of existing testing frameworks that have imple‐
mented test engines for JUnit 5 are TestNG, Cucumber, or Spock. In addition, JUnit 5
provides two out-of-the-box implementations of the test engine API. These engines
are the remaining components of the JUnit 5 architecture, namely:

Project Setup | 39

https://github.com/junit-team/testng-engine
https://github.com/cucumber/cucumber-jvm
https://github.com/spockframework/spock

Vintage
Test engine that provides backward compatibility with legacy JUnit tests (i.e.,
versions 3 and 4).

Jupiter
Test engine that provides a new programming and extension model

Jupiter is a relevant component of JUnit 5 since it provides a brand-new API to
develop tests using a robust programming model. Some of the features of this pro‐
gramming model are parameterized tests, parallel execution, tagging and filtering,
ordered tests, repeated and nested tests, and rich capabilities to disable (ignore) tests.

Like JUnit 4, Jupiter also uses Java annotations to declare test cases. For instance, the
annotation to identify methods with testing logic is also @Test. The name of the rest
of the annotations for the basic test lifecycle is a bit different in Jupiter: @BeforeAll,
@BeforeEach, @AfterEach, and @AfterAll. As you can see in Figure 2-5, each of these
annotations follows the same workflow of JUnit 4.

Figure 2-5. JUnit 5 test lifecycle

40 | Chapter 2: Preparing for Testing

Thus, the structure of a Jupiter test using Selenium WebDriver and WebDriverMan‐
ager is quite similar in JUnit 4 and JUnit 5. In addition to the change in the setup and
teardown annotation names, the test methods (and their lifecycle) are not required to
be public in the Jupiter programming model.

This book will teach you the basics of Jupiter applied to end-to-end
testing with Selenium WebDriver. See the hello world example in
the next section for a complete test based on JUnit 5. Please check
the JUnit 5 documentation for further details.

JUnit 5 with Selenium-Jupiter. The extension model of Jupiter allows adding custom
features to the default programming model. To that aim, Jupiter provides an API that
developers can extend (using interfaces called extension points) to provide custom
functionality. The categories of these extension points are:

Test lifecycle callbacks
To include custom logic in different moments of the test lifecycle

Parameter resolution
To implement dependency injection (i.e., parameters injected in test methods or
constructors)

Test templates
To repeat the tests based on a given context

Conditional test execution
To enable or disable tests depending on custom conditions

Exception handling
To manage Java exceptions during the test and its lifecycle

Test instance
To create and process test class instances

Intercepting invocations
To intercept calls to test code (and decide whether or not these calls proceed)

As a Jupiter developer, you can implement your custom extension or use the existing
ones. Table 2-3 shows some examples of Jupiter extensions.

Project Setup | 41

https://junit.org/junit5/docs/current/user-guide

Table 2-3. Jupiter extensions

Name Description License Maintainer Website
JUnit Pioneer Extension pack for Jupiter EPL 2.0 JUnit Pioneer

team
https://junit-pioneer.org

rerunner-jupiter Extension for rerunning
failed Jupiter tests

Apache 2.0 Artem Sokovets https://github.com/artsok/rerunner-jupiter

MockitoExtension Jupiter extension for
initializing mocks and
handling stubbings

MIT Mockito team https://github.com/mockito/mockito

QuickPerf Library for evaluating some
performance-related
properties

Apache 2.0 QuickPerf team https://github.com/quick-perf/quickperf

Selenium-Jupiter Jupiter extension for
Selenium WebDriver

Apache 2.0 Boni García https://bonigarcia.dev/selenium-jupiter

SpringExtension Jupiter extension for the
Spring Framework

Apache 2.0 Pivotal Software https://spring.io/projects/spring-framework

Selenium-Jupiter is an attractive option in the context of this book since it enables
using Selenium WebDriver in Jupiter tests seamlessly. The bases of Selenium-Jupiter
are as follows (see the next section for a hello world test based on Selenium-Jupiter):

Reduced boilerplate code in test cases
Thanks to the parameter resolution feature provided by the Jupiter programming
model, Selenium-Jupiter allows declaring an object of the WebDriver hierarchy
(e.g., ChromeDriver, FirefoxDriver, etc.) to control web browsers from tests as a
constructor or test parameter.

Automated driver management through WebDriverManager
Thanks to the test lifecycle callbacks provided by the extension model, the use of
WebDriverManager is entirely transparent for Selenium-Jupiter users.

Advanced capabilities for end-to-end testing
This includes, for instance, seamless integration with Docker, test templates (for
cross-browser testing), or troubleshooting and monitoring capabilities (e.g.,
session recordings or configurable screenshots).

TestNG. The last unit testing framework I use in this book is TestNG. Some of the
more significant features that TestNG provides are parallel test execution, test priori‐
tization, data-driven testing using custom annotations, and the creation of detailed
HTML reports.

In the same way as JUnit 4 and Jupiter, TestNG also uses Java annotations to declare
tests and their lifecycle (i.e., what happens before and after each test). Again, the
annotation @Test is used to designate test methods. Then, it provides the annotations
@BeforeClass and @BeforeMethod to specify the test setup, and @AfterMethod and

42 | Chapter 2: Preparing for Testing

https://junit-pioneer.org
https://github.com/artsok/rerunner-jupiter
https://github.com/mockito/mockito
https://github.com/quick-perf/quickperf
https://bonigarcia.dev/selenium-jupiter
https://spring.io/projects/spring-framework

@AfterClass for the teardown (see Figure 2-6). In addition, TestNG allows grouping
the tests contained in Java classes using the following terminology:

• Suite consists of one or more tests.
• Test consists of one or more classes.
• Class is a Java class with testing method(s), e.g., annotated with @Test.

Following this notation, and as represented in Figure 2-6, TestNG provides additional
annotations to execute custom logic before and after the suite and the test(s).

Figure 2-6. TestNG test lifecycle

Project Setup | 43

Fluent assertions
As introduced in Chapter 1, there are different libraries for assertions. These libraries
typically provide a rich set of fluent assertions and comprehensive error messages.
Among these alternatives, I use the library AssertJ in the examples repository. The
reason is twofold. First, we can select the available methods for quickly asserting data
using the autocompletion feature in IDEs (typically available using Ctrl + space after
the static method assertThat). Figure 2-7 shows an example of the inspection of this
method using an IDE (Eclipse in this example).

Figure 2-7. Manual inspection of the available assertion methods in AssertJ using Eclipse

The second advantage of AssertJ compared to other options is that it allows an asser‐
tions chain using dot notation. Thanks to this, we can concatenate several conditions
to create more readable assertions, for instance:

assertThat(1 + 1).isGreaterThan(1).isLessThan(3);

Logging
Finally, I recommend using a logging library to trace your Java code. As you may
know, logging is a simple way programmers track events when software executes.
Logging is typically carried out by writing text messages into a file or the standard
output, and it allows you to trace programs and diagnose problems. Today, it is com‐
mon to use specific libraries to do logging effectively. These libraries provide different
benefits, such as the level of granularity for messages (e.g., debug, warning, or error),
timestamping, or configuration capabilities.

44 | Chapter 2: Preparing for Testing

https://joel-costigliola.github.io/assertj

Hello World
We are ready to put all the pieces explained in this chapter together and implement
our first end-to-end test. As you may know, a hello world program is a simple piece of
code that many programming languages use to illustrate basic syntax. Example 2-1
shows the Selenium WebDriver’s version of this classic hello world.

The following example uses JUnit 5 as the unit testing framework
to embed the call to Selenium WebDriver. Remember that you can
find the other flavors (i.e., JUnit 4, JUnit 5 with Selenium-Jupiter,
and TestNG) in the examples repository.

Example 2-1. Hello world using Chrome and JUnit 5

class HelloWorldChromeJupiterTest {

 static final Logger log = getLogger(lookup().lookupClass());

 private WebDriver driver;

 @BeforeAll
 static void setupClass() {
 WebDriverManager.chromedriver().setup();
 }

 @BeforeEach
 void setup() {
 driver = new ChromeDriver();
 }

 @Test
 void test() {
 // Exercise
 String sutUrl = "https://bonigarcia.dev/selenium-webdriver-java/";
 driver.get(sutUrl);
 String title = driver.getTitle();
 log.debug("The title of {} is {}", sutUrl, title);

 // Verify
 assertThat(title).isEqualTo("Hands-On Selenium WebDriver with Java");
 }

 @AfterEach
 void teardown() {
 driver.quit();
 }

}

Hello World | 45

https://github.com/bonigarcia/selenium-webdriver-java

We declare a Java attribute using the interface WebDriver. We use this variable in
tests to control web browsers with Selenium WebDriver.

In the setup for all tests within this class (i.e., executed once), we call WebDriver‐
Manager to manage the required driver. In this example, since we use Chrome as
a browser, we need to resolve chromedriver.

In the test setup (executed once per test method), we instantiate the WebDriver
object to control Chrome. In other words, we create an object of the type Chrome
Driver.

The test logic uses the Selenium WebDriver API through the driver variable.
First, the test exercises the System Under Test (SUT). To that aim, we open the
practice site using the get() method of our webdriver variable (which represents
a Chrome browser, in this case).

We get the web page title using the method getTitle().

For debugging purposes, we log that title using the DEBUG level.

The last part of the test contains an AssertJ assertion. In this case, we verify the
web page title is as expected.

At the end of each test, we need to close the browser. To that aim, we can invoke
the method quit() of the driver object (see more info about how to close Web
Driver objects in Chapter 3).

You can execute this test in different ways. I recommend getting a local copy of the
examples repository. You can use the GitHub website to download a complete copy of
the source code. Alternatively, you can use Git to clone the repo using the shell, as
follows:

git clone https://github.com/bonigarcia/selenium-webdriver-java

Then, you can use Maven or Gradle (as explained in Appendix C) to run the tests
from the shell. In addition, you can import the cloned Maven/Gradle projects into an
IDE. IDEs provide built-in capabilities to execute the test from their GUI. For
instance, Figure 2-8 shows a screenshot of the execution of the previous hello world
test in Eclipse (in this case, using the command Run → Run As → JUnit Test). Notice
that in the integrated console (at the bottom of the picture), the first traces corre‐
spond to the driver resolution by WebDriverManager. Then, the browser starts
through chromedriver, and finally, we can see the test traces (concretely, the web page
title).

46 | Chapter 2: Preparing for Testing

https://bonigarcia.dev/selenium-webdriver-java

Figure 2-8. Screenshot of the execution of the Selenium WebDriver’s hello world in
Eclipse

The hello world versions using JUnit 4 and TestNG are almost identical to JUnit 5 but
use different annotations for the test lifecycle (e.g., JUnit 4’s @Before instead of JUnit
5’s @BeforeEach, etc.). Regarding JUnit 5 plus Selenium-Jupiter, the code is a bit more
compact. Example 2-2 shows this hello world version. As you can see, there is no need
to declare the setup and teardown. We simply need to declare the WebDriver object
we want as a test parameter (FirefoxDriver in this case), and Selenium-Jupiter takes
care of the driver management (also with WebDriverManager), object instantiation,
and browser disposal.

Example 2-2. Hello world using Firefox and Selenium-Jupiter

@ExtendWith(SeleniumJupiter.class)
class HelloWorldFirefoxSelJupTest {

 @Test
 void test(FirefoxDriver driver) {
 // Same test logic than other "hello world" tests
 }

}

Hello World | 47

Using Additional Browsers
In addition to what I am calling main browsers in this book (i.e., Chrome, Edge, and
Firefox), the example repository contains the hello world test using other browsers:
Opera, Chromium, Safari, and HtmlUnitDriver (a Selenium WebDriver–compatible
driver for the HtmlUnit headless browser). These tests, contained in the package
helloworld_otherbrowsers of this repository, are slightly different from the raw
hello world versions. For instance, Example 2-3 shows the JUnit 5 class setup of the
hello world test using Opera. Since this browser might not be available in the machine
running the test (e.g., Opera is not available in GitHub Actions), I use assumptions to
disable the test in runtime conditionally.

Example 2-3. Class setup using Opera and JUnit 5

@BeforeAll
static void setupClass() {
 Optional<Path> browserPath = WebDriverManager.operadriver()
 .getBrowserPath();
 assumeThat(browserPath).isPresent();
 WebDriverManager.operadriver().setup();
}

We use WebDriverManager to locate the browser path.

If this path does not exist, we assume the browser is not installed in the system,
so the test is skipped (using an AssertJ assumption).

As usual, you can find this test using other unit testing frameworks in the examples
repository. The JUnit 5 and TestNG versions use the equivalent test setup to the pre‐
vious snippet. Nevertheless, there is a difference when using JUnit 5 plus Selenium-
Jupiter. As you can see in Example 2-4, Selenium-Jupiter simplifies the assumption
logic by using a custom annotation (called EnabledIfBrowserAvailable) to disable
tests depending on the browser availability (Safari in this example).

Example 2-4. Hello world using Safari and JUnit 5 plus Selenium-Jupiter

@EnabledIfBrowserAvailable(SAFARI)
@ExtendWith(SeleniumJupiter.class)
class HelloWorldSafariSelJupTest {

 @Test
 void test(SafariDriver driver) {
 // Same test logic than other "hello world" tests
 }

}

48 | Chapter 2: Preparing for Testing

To control Safari with Selenium WebDriver, we need to configure Safari manually to
authorize remote automation. To that aim, first, we show the develop menu by click‐
ing on the menu option Safari → Preferences → Advanced tab. Then, we enable the
“Show Develop Menu” checkbox. After that, the “Develop” menu should appear.
Finally, we click on the option “Allow Remote Automation” (see Figure 2-9).

Figure 2-9. Enable Safari remote automation on macOS

Summary and Outlook
This chapter provides the foundations for developing end-to-end tests for web appli‐
cations using Selenium WebDriver and Java. The first important decision you need to
make is to decide in which unit testing framework to embed the Selenium WebDriver
calls to implement these tests. For the sake of diversity and completeness, I propose
four options in this book: JUnit 4, JUnit 5, JUnit 5 plus Selenium-Jupiter, and TestNG.
They are all equivalent for basic Selenium WebDriver tests. For more advanced uses,
Chapter 8 will cover the specific features of each testing framework that could be rele‐
vant to WebDriver tests (e.g., parameterized tests for cross-browser testing). Another
decision you should make is to choose a build tool. In this book, I propose two
options: Maven and Gradle. Once again, both are similar for standard development
practices.

The second part of this book is focused on the Selenium WebDriver API and begins
next. To get started, Chapter 3 covers the fundamental notions of the Selenium Web‐
Driver API in terms of WebDriver objects, web elements location, user impersonation
(keyboard and mouse actions), and waiting strategies. As usual, this chapter is guided
by code examples available on the repository hosted in GitHub.

Summary and Outlook | 49

PART II

The Selenium WebDriver API

Selenium WebDriver is an open source library that allows controlling web browsers
(e.g., Chrome, Edge, or Firefox, to name a few) programmatically as a real user would
do. It provides a cross-browser API that you can use to implement end-to-end tests
for web applications. This part of the book presents an in-depth summary of the Sele‐
nium WebDriver API. The following chapters aim to be very practical. For this rea‐
son, I explain each feature of the Selenium WebDriver API using ready-to-use tests
available on the examples repository in GitHub.

CHAPTER 3

WebDriver Fundamentals

This chapter presents the elementary aspects of the Selenium WebDriver API. To that
aim, we review first the different ways to create instances of the WebDriver hierarchy
(e.g., ChromeDriver, EdgeDriver, FirefoxDriver, etc.). Also, we explore the main
methods available in these objects. Among them, locating the different elements in a
web page is essential. Thus, you will discover the possible locators, i.e., strategies to
find the elements within a web page (called WebElement in the Selenium WebDriver
API), such as by tag name, link text, HTML attribute (identifier, name, or class), CSS
selector, or XPath. Another critical aspect of the Selenium WebDriver API covered in
this chapter is the impersonation of user actions (i.e., automated interactions with
web pages using the keyboard and mouse). The last part of this chapter presents the
ability to wait for web elements. This feature is critical due to the dynamic and asyn‐
chronous nature of web applications.

Basic WebDriver Usage
This section covers three fundamental aspects related to WebDriver objects. First, we
review the different ways to create them. Second, we study their basic operations.
Finally, we analyze the different ways to dispose of these objects (typically at the end
of a test, for closing the browser).

WebDriver Creation
As introduced in Chapter 2, to control browsers with Selenium WebDriver in Java,
the first step is to create WebDriver instances. Thus, we need to create a Chrome
Driver object when using Chrome, EdgeDriver for Edge, FirefoxDriver for Firefox,
and so on. The basic way to create instances of these types is to use the new operator
in Java. For example, we create a ChromeDriver object as follows:

53

WebDriver driver = new ChromeDriver();

The use of the operator new for creating WebDriver instances is perfectly correct, and
you can use it in your tests. Nevertheless, it is worth reviewing other possibilities that
can provide additional benefits depending on specific use cases for creating these
objects. These alternatives are the WebDriver and the WebDriverManager builders.

WebDriver builder
The Selenium WebDriver API provides a built-in method following the builder pat‐
tern to create WebDriver instances. This feature is accessible through the static
method builder() of the RemoteWebDriver class and provides a fluent API for creat‐
ing WebDriver objects. Table 3-1 presents the available methods for this builder.
Example 3-1 shows a test skeleton using the WebDriver builder.

Table 3-1. WebDriver builder methods

Method Description
oneOf(Capabilities options) Browser-specific capabilities

addAlternative(Capabilities options) Alternative browser-specific capabilities (see Chapter 5)

addMetadata(String key, Object value) Add custom metadata, typically used for requesting additional
features in cloud providers (see Chapter 6)

setCapability(String capabilityName,
 Object value)

Individual browser-specific capabilities (see Chapter 5)

address(String uri)
address(URL url)
address(URI uri)

Set the address of the remote server (see Chapter 6)

config(ClientConfig config) Specific configuration when using a remote server, such as the
connection timeout or proxy settings

withDriverService(DriverService service) Specific configuration for the local driver (e.g., chromedriver), such
as its file location, used port, timeout, or arguments

build() Last method in the builder pattern, devoted to creating a Web
Driver instance

Chapter 5 explains the details about browser-specific capabilities
(such as ChromeOptions). At this point, we use these classes just
to select a browser type (e.g., ChromeOptions for Chrome, Edge
Options for Edge, or FirefoxOptions for Firefox).

54 | Chapter 3: WebDriver Fundamentals

Example 3-1. Test skeleton using the WebDriver builder

class WebDriverBuilderJupiterTest {

 WebDriver driver;

 @BeforeAll
 static void setupClass() {
 WebDriverManager.chromedriver().setup();
 }

 @BeforeEach
 void setup() {
 driver = RemoteWebDriver.builder().oneOf(new ChromeOptions()).build();
 }

 @AfterEach
 void teardown() {
 driver.quit();
 }

 @Test
 void test() {
 // TODO: use variable "driver" to call the Selenium WebDriver API
 }

}

As usual, before the actual WebDriver instantiation, we resolve the required
driver (chromedriver in this example) using WebDriverManager.

We create the WebDriver instance using the WebDriver builder. Since we want to
use Chrome in this test, we use a ChromeOptions object as the capabilities argu‐
ment (using the method oneOf()).

From a functional point of view, this example works in the same way as the regular
hello world tests presented in Chapter 2. Nevertheless, the WebDriver builder API
easily allows specifying a different behavior. Consider the following snippet as an
example. This code changes the setup method and creates a SafariDriver instance.
Suppose the instantiation of this object is not possible (typically, when the test is not
executed on macOS, and therefore, Safari is not available in the system). In that case,
we use Chrome as an alternative browser.

@BeforeEach
void setup() {
 driver = RemoteWebDriver.builder().oneOf(new SafariOptions())
 .addAlternative(new ChromeOptions()).build();
}

Basic WebDriver Usage | 55

WebDriverManager builder

Another possibility to create WebDriver objects is using WebDriverManager. In addi‐
tion to resolving drivers, as of version 5, WebDriverManager provides a WebDriver
builder utility. Example 3-2 shows a test skeleton using this builder.

Example 3-2. Test skeleton using the WebDriverManager builder

class WdmBuilderJupiterTest {

 WebDriver driver;

 @BeforeEach
 void setup() {
 driver = WebDriverManager.chromedriver().create();
 }

 @AfterEach
 void teardown() {
 driver.quit();
 }

 @Test
 void test() {
 // TODO: use variable "driver" to call the Selenium WebDriver API
 }

}

WebDriverManager resolves the required driver (chromedriver in this case) and
creates an instance of the proper WebDriver type (ChromeDriver in this case) in a
single line.

This approach has different benefits. First, it enables less verbose tests since the driver
resolution and WebDriver instantiation are simultaneous. Second, it allows specifying
the browser type (i.e., Chrome, Firefox, etc.) simply by selecting a specific manager
(i.e., chromedriver(), firefoxdriver(), etc.). Moreover, we can easily parameterize
the selection of a manager to create cross-browser tests (see Chapter 8). Finally, the
WebDriverManager allows you to specify browser-specific capabilities (see Chap‐
ter 5) and effortlessly use browsers in a Docker container (see Chapter 6).

WebDriverManager keeps a reference to WebDriver objects created using this
approach. In addition, it launches a shutdown hook to watch the correct disposal of
WebDriver instances. If WebDriver sessions are live when the JVM is shutting down,
WebDriverManager quits these browser(s). You can play with this feature by remov‐
ing the teardown() method of the example before.

56 | Chapter 3: WebDriver Fundamentals

Although WebDriverManager quits the WebDriver objects auto‐
matically, I recommend you do it explicitly in each test. Otherwise,
in the typical case of executing a test suite, all browsers remain
open until the end of the test suite execution.

WebDriver Methods
The WebDriver interface provides a group of methods that are the basis of the Sele‐
nium WebDriver API. Table 3-2 presents a summary of these methods. Example 3-3
shows a basic test using several of these methods.

Table 3-2. WebDriver methods

Method Return Description
get(String url) void Load a web page in the current browser.

getCurrentUrl() String Get the URL currently loaded in the browser.

getTitle() String Get the title (<title> HTML tag) of the current web page.

findElement(By by) WebElement Find the first WebElement using a given locator in the current web
page. In other words, if several elements match the locator, the first one
(in the Document Object Model [DOM]) is returned (see “Locating
WebElements” on page 59 for further details).

findElements(By by) List<WebElement> Find every WebElement using a given locator in the current web page
(see also “Locating WebElements” on page 59).

getPageSource() String Get the HTML source code of the current web page.

navigate() Navigation Access the browser history and navigate to a given URL (see Chapter 4).

getWindowHandle() String Get the window handle, i.e., a unique identifier for the open window in
the current browser (see Chapter 4).

getWindowHandles() Set<String> Get the set of window handles currently open in the current browser
(see also Chapter 4).

switchTo() TargetLocator Select a frame or window in the current browser (see Chapter 4).

manage() Options Generic utility for managing different aspects of the browser (e.g.,
browser size and position, cookies, timeouts, or logs).

close() void Close the current window, quitting the browser if there are no more
windows opened.

quit() void Close all windows and quit the browser.

From now on, I illustrate the examples showing only the test logic.
These tests use a WebDriver object created before the test (in the
setup method) and closed after the test (in the teardown method).
As a convention, I show the JUnit 5 tests in the book (although you
can find them also for JUnit 4, Selenium-Jupiter, and TestNG in the
examples repository).

Basic WebDriver Usage | 57

Example 3-3. Test using several basic methods of the Selenium WebDriver API

@Test
void testBasicMethods() {
 String sutUrl = "https://bonigarcia.dev/selenium-webdriver-java/";
 driver.get(sutUrl);

 assertThat(driver.getTitle())
 .isEqualTo("Hands-On Selenium WebDriver with Java");
 assertThat(driver.getCurrentUrl()).isEqualTo(sutUrl);
 assertThat(driver.getPageSource()).containsIgnoringCase("</html>");
}

We open the practice website.

We verify the page title is as expected.

We confirm the current URL is still the same.

We check that the source HTML of the page contains a given tag.

Convention for Test Names and Classes in the Examples Repository
For ease of locating tests in the examples repository, I follow a naming convention.
The name of each presented test always starts with the word test followed by a
descriptive label. Then, I use this label as the prefix of the Java class containing the
test. For instance, you can find the previous test (called testBasicMethods) in the
classes BasicMethodsJUnit4Test (using JUnit 4), BasicMethodsJupiterTest (using
JUnit 5), BasicMethodsSelJupTest (using JUnit 5 plus Selenium-Jupiter), and Basic
MethodsNGTest (using TestNG).

Session Identifier
Each time we instantiate a WebDriver object, the underlying driver (e.g., chrome‐
driver, geckodriver, etc.) creates a unique identifier called sessionId to track the
browser session. We can use this value in our test to univocally identify a browser ses‐
sion. For that, we need to invoke the method getSessionId() in our driver object.
Notice this method is not available in Table 3-2, because it belongs to the RemoteWeb
Driver class. In practice, the types we use to control browsers (e.g., ChromeDriver,
FirefoxDriver, etc.) inherit from that class. Therefore, we simply need to cast the
WebDriver object to RemoteWebDriver to invoke the getSessionId() method.
Example 3-4 shows a basic test using it.

58 | Chapter 3: WebDriver Fundamentals

Example 3-4. Test reading the sessionId

@Test
void testSessionId() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");

 SessionId sessionId = ((RemoteWebDriver) driver).getSessionId();
 assertThat(sessionId).isNotNull();
 log.debug("The sessionId is {}", sessionId.toString());
}

We cast the driver object to RemoteWebDriver and read its sessionId.

We verify the sessionId has some value.

We log the sessionId on the standard output.

WebDriver Disposal
As you can see in Table 3-2, there are two methods to dispose of the WebDriver
objects, called close() and quit(). As a general rule, I use quit() in the examples
since this method closes the browser and every associated window. On the other
hand, the method close() terminates only the current window. Therefore, I only use
close() in the case of handling different windows (or tabs) in the same browser, and
I want to finish some of the windows (or tabs) and still use the rest.

Locating WebElements
One of the most relevant aspects of the Selenium WebDriver API is the ability to
interact with the different elements of a web page. These elements are handled by
Selenium WebDriver using the interface WebElement, an abstraction for HTML ele‐
ments. As introduced in Table 3-2, there are two methods to locate WebElement in a
given web page. First, the method findElement() returns the first occurrence (if any)
of a given node in the Document Object Model (DOM). Second, the method find
Elements() returns a list of DOM nodes. Both methods accept a parameter By, which
specifies the location strategy.

The Document Object Model (DOM)
The DOM is a cross-platform interface that allows representing XML-like documents
(e.g., web pages, based on HTML) in a tree structure. Example 3-5 shows an small
web page; the associated DOM tree structure in memory is represented in Figure 3-1.
As you can see, each HTML tag (e.g., <html>, <head>, <body>, <a>, etc.) produces a
node (or element) in the tree. Then, each standard HTML attribute (e.g., charset,

Locating WebElements | 59

href, etc.) produces an equivalent DOM property. Also, the text content of the HTML
tags is available in the resulting tree. Languages like JavaScript use DOM methods to
access and modify the tree structure. Thanks to this, web pages are dynamic and can
change their layout and content in response to user events.

Example 3-5. Basic web page

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8">
 <title>DOM example</title>
</head>
<body>
 <h1>Heading text</h1>
 Link text
</body>
</html>

Figure 3-1. DOM structure generated from Example 3-5

60 | Chapter 3: WebDriver Fundamentals

WebElement Methods
Table 3-3 contains a summary of the available methods in the WebElement class. You
will find examples of each method in the following parts of this section.

Table 3-3. WebElement methods

Method Return Description
click() void Perform a mouse click (i.e., a left-click) in the current

element.
submit() void Send a web form (when the current element is a form).

sendKeys(CharSequence... keys) void Simulate typing with the keyboard (e.g., in input text
elements).

clear() void Reset the value of an input text element.

getTagName() String Get the tag name of the element.

getDomProperty(String name) String Get the value of a DOM property.

getDomAttribute(String name) String Get the value of the element attribute as declared in its
HTML markup.

getAttribute(String name) String Get the value of the given HTML attribute (e.g., class)
as a String. More precisely, this method attempts to
get a meaningful value of the DOM property with the
given name if it exists. For instance, for boolean
attributes (e.g., readonly), it returns true if it exists
or null if not.

getAriaRole() String Get element role as defined on the W3C WAI-ARIA
specification.

getAccessibleName() String Get element accessible name as defined by WAI-ARIA.

isSelected() boolean Determine if a checkbox, option in a select, or radio
button is selected.

isEnabled() boolean Determine if an element is enabled or not (e.g., a form
field).

isDisplayed() boolean Determine if an element is visible or not.

getText() String Get the visible text of the element, including its sub-
elements (if any).

getLocation() Point Get the position (x and y coordinates) from the top-left
corner of the rendered element.

getSize() Dimension Get the width and height of the rendered element.

getRect() Rectangle Get the location and size of the rendered element.

getCssValue(String propName) String Get the value of a CSS property of the element.

getShadowRoot() SearchContext Get the shadow root to search in a shadow tree (see “The
Shadow DOM” on page 118).

Locating WebElements | 61

https://www.w3.org/TR/wai-aria

Method Return Description
findElements(By by) List<WebElement> Find all subelements that match the locator within the

current element.
findElement(By by) WebElement Find the first subelement that matches the locator within

the current element.

Location Strategies
Selenium WebDriver provides eight basic location strategies, summarized in
Table 3-4. In addition, as explained in the next subsections, there are other advanced
location strategies, namely, compound and relative locators.

We specify the basic locators using the class By in the Selenium WebDriver API. The
following subsections show examples of all these strategies. We use the practice web
form to that aim. Figure 3-2 shows a screenshot of this form.

Table 3-4. Summary of the location strategies in Selenium WebDriver

Locator Finds elements based on
Tag name The name of HTML tag (e.g., a, p, div, img, etc.).

Link text The exact text value displayed by a link (i.e., a HTML tag).

Partial link text The text contained in a link (i.e., a HTML tag).

Name The value of the attribute name.

Id The value of the attribute id.

Class name The value of the attribute class.

CSS selector Patterns that follow the W3C Selectors recommendation. The original aim of CSS patterns is to select
element(s) in a web page to apply CSS styles. Selenium WebDriver allows reusing these CSS selectors to find
web elements and interact with them.

XPath Queries that follow the XPath (XML Path Language) language. XPath is a W3C standard query language for
selecting nodes from an XML-like document (e.g., web pages).

62 | Chapter 3: WebDriver Fundamentals

https://bonigarcia.dev/selenium-webdriver-java/web-form.html
https://bonigarcia.dev/selenium-webdriver-java/web-form.html
https://www.w3.org/TR/selectors
https://www.w3.org/TR/xpath

Figure 3-2. Practice web form used in the locator examples

Locating by HTML tag name
One of the most basic strategies for finding web elements is by tag name. Example 3-6
shows a test using this strategy. This test locates the text area available in the practice
web form, whose HTML markup is the following:

<textarea class="form-control" id="my-textarea" rows="3"></textarea>

Example 3-6. Test using a locator strategy by tag name

@Test
void testByTagName() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");

 WebElement textarea = driver.findElement(By.tagName("textarea"));
 assertThat(textarea.getDomAttribute("rows")).isEqualTo("3");
}

We use the locator By.tagName("textarea") to find this element. In this case,
since this is the only text area declared on the web page, we can be sure that the
method findElement() will locate this element.

We ensure the attribute rows value is the same as defined in the HTML markup.

Locating WebElements | 63

Locating by HTML attributes (name, id, class)
Another straightforward location strategy is to find web elements by an HTML
attribute, i.e., name, id, or class. Consider the following input text available in the
practice web form. Notice that it includes the standard attributes class, name, id, and
the nonstandard attribute myprop (included to illustrate the difference between sev‐
eral WebDriver methods). Example 3-7 shows a test using this strategy.

<input type="text" class="form-control" name="my-text" id="my-text-id"
 myprop="myvalue">

Example 3-7. Test using locators by HTML attributes (name, id, and class)

@Test
void testByHtmlAttributes() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");

 // By name
 WebElement textByName = driver.findElement(By.name("my-text"));
 assertThat(textByName.isEnabled()).isTrue();

 // By id
 WebElement textById = driver.findElement(By.id("my-text-id"));
 assertThat(textById.getAttribute("type")).isEqualTo("text");
 assertThat(textById.getDomAttribute("type")).isEqualTo("text");
 assertThat(textById.getDomProperty("type")).isEqualTo("text");

 assertThat(textById.getAttribute("myprop")).isEqualTo("myvalue");
 assertThat(textById.getDomAttribute("myprop")).isEqualTo("myvalue");
 assertThat(textById.getDomProperty("myprop")).isNull();

 // By class name
 List<WebElement> byClassName = driver
 .findElements(By.className("form-control"));
 assertThat(byClassName.size()).isPositive();
 assertThat(byClassName.get(0).getAttribute("name")).isEqualTo("my-text");
}

We locate the text input by name.

We assert that the element is enabled (i.e., the user can type in it).

We find the same text input element by id.

This assertion (and the next two) returns the same value since the attribute type
is standard, and as previously explained, it becomes a property in the DOM.

64 | Chapter 3: WebDriver Fundamentals

This assertion (and the next two) return different values since the attribute
myprop is not standard, and for this reason, it is not available as a DOM property.

We locate a list of elements by class.

We verify the list has more than one element.

We check that the first element found by class is the same as the input text loca‐
ted before.

Locating by link text
The last basic locator is by link text. This strategy is twofold: locate by exact and by
partial text occurrence. We use a link in the practice web form to illustrate this locator
in the following HTML markup. Then, Example 3-8 shows a test using these locators.

Return to index

Example 3-8. Test using locators by text link

@Test
void testByLinkText() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");

 WebElement linkByText = driver
 .findElement(By.linkText("Return to index"));
 assertThat(linkByText.getTagName()).isEqualTo("a");
 assertThat(linkByText.getCssValue("cursor")).isEqualTo("pointer");

 WebElement linkByPartialText = driver
 .findElement(By.partialLinkText("index"));
 assertThat(linkByPartialText.getLocation())
 .isEqualTo(linkByText.getLocation());
 assertThat(linkByPartialText.getRect()).isEqualTo(linkByText.getRect());
}

We locate an element by its full link text.

We check its tag name is a.

We check its CSS property cursor is pointer (i.e., the style typically used for
clickable elements).

We find an element by partial link text. This link will be the same as in step 1.

We verify both elements share the same position and size.

Locating WebElements | 65

Locating by CSS selectors
The strategies we have seen so far are easy to apply but also have some limitations.
First, locating by tag name can be tricky since it is likely that the same tag will occur
many times on a web page. Next, finding elements by HTML attributes (name, id, or
class) is a limited approach since these attributes are not always available. In addition,
ids can be autogenerated and volatile between different sessions. Lastly, the location
by link text is limited only to links. To overcome these limitations, Selenium Web‐
Driver provides two powerful location strategies: CSS selector and XPath.

There are many possibilities for creating CSS selectors. Table 3-5 shows a comprehen‐
sive summary with the basic CSS selectors.

Table 3-5. Basic CSS selectors

Category Syntax Description Example Example explanation
Universal * Select all elements * Match all elements

Type elementName Select all elements with a
given tag name

input Match all <input> elements

Class .classname Select elements with a
given class attribute

.form-control Match all elements with class of
form-control

Id #id Select elements with a
given id attribute

#my-text-id Match all elements with id
my-text-id

Attribute [attr] Select elements with a
given attribute

[target] Match all elements with a
target attribute

[attr=value] Select elements with a
given attribute and value

[target=_blank] Match all elements with a
target="_blank" attribute

[attr~=value] Select elements with a
given attribute
containing some text
value

[title~=hands] Match all elements with a title
attribute containing the word
hands

[attr|=value] Select elements with a
given attribute equal to
or starting by some value

[lang|=en] Match all elements equal to or
starting with en

[attr^=value] Select elements with a
given attribute starting
by some value

a[href^="https"] Match all links whose href
attribute starts with https

[attr$=value] Select elements with a
given attribute ending by
some value

a[href$=".pdf"] Match all links whose href
attribute ends with .pdf

[attr*=value] Select elements with a
given attribute value
containing some string

a[href*="github"] Match all links whose href
attribute contains github

The following HTML excerpt shows the hidden input text available in the practice
web form. Then, Example 3-9 illustrates a possible way to locate this element using a

66 | Chapter 3: WebDriver Fundamentals

CSS selector. One advantage of this locator is that the selector will still work even
when changing the attribute name in HTML markup.

<input type="hidden" name="my-hidden">

Example 3-9. Test using a basic locator with CSS selector

 @Test
 void testByCssSelectorBasic() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");

 WebElement hidden = driver
 .findElement(By.cssSelector("input[type=hidden]"));
 assertThat(hidden.isDisplayed()).isFalse();
 }

We use a CSS selector to locate the hidden input.

We check the hidden field is not visible.

There are plenty of possibilities to create advanced CSS selectors. Table 3-6 shows a
summary with some of them. The complete reference of CSS selectors is available in
the official W3C recommendation.

Table 3-6. Advanced CSS selectors

Category Syntax Description Example Example explanation
Grouping , Group two (or more) selectors div, span Match both and

<div> elements

Combinators (space) Select elements that are
descendants

div span Match all that are
inside a <div>

A > B Select elements that are direct
children of another element

ul > li Match all elements
nested directly inside to

A ~ B Select elements sharing the same
parent (i.e., siblings), and the
second element follows the first
(not necessarily immediately)

p ~ span Match all that
follow a <p>
(immediately or not)

A + B Sibling elements, and the second
element immediately follows the
first

h2 + p Match all <p> that
immediately follows <h2>

Pseudo : Select a CSS pseudoclass (i.e., a
special state of the selected
element)

a:visited Match all already visited
links

:nth-child(n) Select elements based on their
position in a group (starting from
the beginning)

p:nth-
child(2)

Match every second <p>
child

Locating WebElements | 67

https://www.w3.org/TR/selectors

Category Syntax Description Example Example explanation

:not(selector) Select elements not matching a
given selector

:not(p) Match every element
different from <p>

:nth-last-
child(n)

Select elements based on their
position in a group (starting from
the end)

p:nth-last-
child(2)

Match every second <p>
child (counting from the
last child)

:: Select a CSS pseudoelement (i.e., a
specific part of the selected
element)

p::first-
line

Match the first line of all
<p> elements

Consider the following piece of HTML (as usual, contained in the practice web
form). As you can see, there are a couple of checkboxes: one of them is checked, and
the other is not. We can determine which element is checked using the Selenium
WebDriver API and CSS selectors. To that aim, Example 3-10 uses CSS pseudoclass.

<input class="form-check-input" type="checkbox" name="my-check" id="my-check-1"
 checked>
<input class="form-check-input" type="checkbox" name="my-check" id="my-check-2">

Example 3-10. Test using advanced locators with CSS selectors

@Test
void testByCssSelectorAdvanced() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");

 WebElement checkbox1 = driver
 .findElement(By.cssSelector("[type=checkbox]:checked"));
 assertThat(checkbox1.getAttribute("id")).isEqualTo("my-checkbox-1");
 assertThat(checkbox1.isSelected()).isTrue();

 WebElement checkbox2 = driver
 .findElement(By.cssSelector("[type=checkbox]:not(:checked)"));
 assertThat(checkbox2.getAttribute("id")).isEqualTo("my-checkbox-2");
 assertThat(checkbox2.isSelected()).isFalse();
}

We use the pseudoclass checked to locate clicked checkboxes.

We check the element id is as expected.

We confirm the selected is checked.

We use the pseudoclass checked and the operator not to locate default checkboxes.

We check the element id is as expected.

68 | Chapter 3: WebDriver Fundamentals

We confirm the selected is unchecked.

Locating by XPath
XPath (XML Path Language) is a powerful way of navigating to the DOM of XML-
like documents, such as HTML pages. It includes over two hundred built-in functions
to create advanced queries to select nodes. There are two types of XPath queries.
First, absolute queries use the symbol slash (/) to traverse the DOM from the root
node. For example, considering the basic HTML page in Example 3-5, to select the
link element present in this page using this approach, we need the following XPath
query:

/html/body/a

Absolute XPath queries are easy to create, but they have a relevant inconvenience: any
minimal change in the page layout would make a locator built with this strategy fail.
For this reason, as a general rule, the usage of absolute XPaths is discouraged. Instead,
relative queries are more convenient.

The general syntax for relative XPath queries is as follows:

//tagname[@attribute='value']

Example 3-11 shows a test with an XPath locator to select the hidden field in the
practice web.

Example 3-11. Test using a basic locator with XPath

@Test
void testByXPathBasic() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");

 WebElement hidden = driver
 .findElement(By.xpath("//input[@type='hidden']"));
 assertThat(hidden.isDisplayed()).isFalse();
}

We locate the hidden field in the practice web.

We verify this element is not visible to the user.

The real power of XPath comes from its built-in functions. Table 3-7 contains some
of the most relevant XPath functions. You can find the complete XPath reference in
the W3C XPath Recommendations.

Locating WebElements | 69

https://www.w3.org/TR/xpath

Table 3-7. Summary of relevant XPath built-in functions

Category Syntax Description Example Example explanation
Attributes contains(@attr,

'string')

Check if an attribute
contains a string

//a[contains(@href,
'github')]

Match links with href
containing github

starts-
with(@attr,
'string')

Check if an attribute
starts with a string

//a[starts-
with(@href,
'https')]

Match all links using
HTTPS

ends-
with(@attr,
'string')

Check if an attribute
end with a string

//a[ends-
with(@href, https)]

Match all links to PDF
documents

Text text()='string' Locate elements
based on text content

//*[text()=click] Match all elements with
the text click

Child
nodes

[index] Locate children
elements

//div/*[0] First child of a <div>

Boolean or Logic operator or //@type='submit' or
@type='reset']

Match buttons to submit
and clear forms

and Logic operator and //@type='submit'
and @id
='my-button']

Match submit buttons
with a given id

not() Logic operator not //@type='submit'
and not(@id
='my-button')]

Match submit buttons
different to a given id

Axes (used
to locate
relative
nodes)

following::item Nodes that come after
the current one

//*[@type='text']//
following::input

Match all input fields
after the first text input

descendant::item Select descendant
elements (child, etc.)
of current node

//*[@id='my-id']//
descendant::a

Match all descendant
links from a given parent
node

ancestor::item Select ancestor
elements (parent,
etc.) of current node

//input[@id='my-
id']//ances
tor::label

Match all antecedent
labels from a given input
text

child::item Select children
elements of current
node

//*[@id='my-id']//
child::li

Match all list element
under a given node

preceding::item Select all nodes that
come before the
current one

//*[@id='my-id']//
preceding::input

Match all input before
a given node

following-
sibling::item

Select following nodes
that come before the
current one

//*[@id='my-id']//
following-
sibling::input

Match the next input
before a given node

parent::item Select parent of the
current node

//*[@id='my-id']//
parent::div

Match the parent div
element of a given node

70 | Chapter 3: WebDriver Fundamentals

Example 3-12 shows how to use XPath locators for the radio buttons available in the
practice web form. The HTML markup for these radio buttons is:

<input class="form-check-input" type="radio" name="my-radio" id="my-radio-1"
 checked>
<input class="form-check-input" type="radio" name="my-radio" id="my-radio-2">

Example 3-12. Test using advanced locators with XPath

@Test
void testByXPathAdvanced() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");

 WebElement radio1 = driver
 .findElement(By.xpath("//*[@type='radio' and @checked]"));
 assertThat(radio1.getAttribute("id")).isEqualTo("my-radio-1");
 assertThat(radio1.isSelected()).isTrue();

 WebElement radio2 = driver
 .findElement(By.xpath("//*[@type='radio' and not(@checked)]"));
 assertThat(radio2.getAttribute("id")).isEqualTo("my-radio-2");
 assertThat(radio2.isSelected()).isFalse();
}

We use XPath to locate the checked radio buttons.

We check the element id is as expected.

We confirm the selected is checked.

We use XPath to locate the unchecked radio buttons.

We check the element id is as expected.

We confirm the selected is unchecked.

“What Strategy Should You Use?” on page 80 provides a compari‐
son between CSS selectors and XPath and gives some hints for
selecting one or another locator strategies.

Locating WebElements | 71

Finding Locators on a Web Page
As introduced in Table 1-4 in Chapter 1, there are different tools we can use to help
generate locators for our WebDriver tests. This section shows how to use the main
features of the built-in developer tools in major browsers, i.e., Chrome DevTools for
Chromium-based browsers (e.g., Chrome and Edge) and Firefox Developer Tools
(for Firefox).

You can open both of these developer tools by right-clicking on the portion of the
web page UI that you want to test and then selecting the option menu Inspect.
Figure 3-3 shows a screenshot of Chrome DevTools placed at the bottom of the
browser (you can move it if you want).

Developer tools provide different ways to locate elements in a web page. First, we use
the element selector by clicking on the icon (an arrow over a box) in the upper left
corner of the developer tools pane. Then, we can move the mouse over the page to
highlight each web element and inspect the elements panel to check their markup,
attributes, etc.

Figure 3-3. Use of Chrome DevTools while navigating the practice site

In the same view, we can use the tool to copy its CSS or XPath selector by right-
clicking on the element and then selecting the menu option “Copy.” This mechanism
allows getting the full CSS or XPath selector. It can be the first approach to generate a
locator quickly, although I do not recommend using these locators directly since they
tend to be brittle (i.e., linked to the current page layout) and are hard to read.

72 | Chapter 3: WebDriver Fundamentals

https://developer.chrome.com/docs/devtools
https://developer.mozilla.org/en-US/docs/Tools

To create robust CSS or XPath locators, we need to think about the specific character‐
istics of the web pages we are working with and create a custom selector based on that
knowledge. Again, the developer tools can help us in this task. We can press the key
combination Ctrl + F to search by string, CSS selector, or XPath in Chrome DevTools.
Figure 3-4 shows an example of this feature in action.

Notice we are using the practice web form, and we type the string #my-text-id,
which corresponds to the element with a given id using a CSS selector. DevTools
found the web element on the page and highlighted it.

Figure 3-4. Searching CSS selector in Chrome DevTools

We can use a similar approach in Firefox. We need to use the console panel and type
$$("css-selector") for searching by CSS selector or $x("xpath-query") for XPath
queries. Figure 3-5 shows how to locate the first input text element of the practice
web form by id, using a CSS selector and an XPath query.

Locating WebElements | 73

Figure 3-5. Searching CSS selector and XPath in Firefox Developer Tools

Compound Locators
The Selenium WebDriver API has several support classes that enable the composition
of the different locator types we have seen. These classes are:

ByIdOrName(String idOrName)

It seeks by id, and if that is not available, it seeks by name.

ByChained(By... bys)

It seeks elements in a sequence (i.e., the second one should appear inside the first
one, and so on).

ByAll(By... bys)

It seeks elements that match a number of location strategies (following an and
logic condition for these locators).

Example 3-13 shows a test using ByIdOrName. This test looks for the following file-
select field available in the practice web form. Notice that this field specifies the
attribute name (but not id).

<input class="form-control" type="file" name="my-file">

74 | Chapter 3: WebDriver Fundamentals

Example 3-13. Test using by id or name compound locator

@Test
void testByIdOrName() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");

 WebElement fileElement = driver.findElement(new ByIdOrName("my-file"));
 assertThat(fileElement.getAttribute("id")).isBlank();
 assertThat(fileElement.getAttribute("name")).isNotBlank();
}

We use a locator by id or name.

We check the element has the attribute name.

We verify the absence of the attribute name in the same element.

Example 3-14 shows two tests illustrating the difference between ByChained and
ByAll. Both locators use the practice web form again. If you inspect its source code,
you will notice that there are three single <div class="row"> inside the <form>.

Example 3-14. Test using by chained and by all compound locators

@Test
void testByChained() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");

 List<WebElement> rowsInForm = driver.findElements(
 new ByChained(By.tagName("form"), By.className("row")));
 assertThat(rowsInForm.size()).isEqualTo(1);
}

@Test
void testByAll() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");

 List<WebElement> rowsInForm = driver.findElements(
 new ByAll(By.tagName("form"), By.className("row")));
 assertThat(rowsInForm.size()).isEqualTo(5);
}

We use the locator using ByChained.

We find one element since only one row element is within the form.

Locating WebElements | 75

We use the locator using ByAll.

We find five elements, since the locator matches a <form> element plus four <div
class="row"> available on the page.

Relative Locators
Selenium WebDriver version 4 incorporates a new way to find elements in a web
page: relative locators. These new locators aim to find web elements relative to
another known element. This feature is based on the CSS box model. The model
determines that each element of a web document is rendered using a rectangular box.
Figure 3-6 shows an example of this box model for a given web element in the prac‐
tice form.

Figure 3-6. Practice form showing the box model of a web element

Using this box model, the relative locators available in the Selenium WebDriver API
allow finding elements in relation to the position of another web element. To this
aim, first, we need to locate that web element using the standard location strategies
(e.g., by id, name, attribute, etc.). Then, we need to specify the locator type obtained
by proximity to the original web element using the static method with of the class
RelativeLocator. As a result, we get a RelativeBy object, which extends the abstract
class By, used in the standard locator strategies. A RelativeBy object provides the fol‐
lowing methods to carry out relative location:

76 | Chapter 3: WebDriver Fundamentals

above()

Finds element(s) located on the top of the original element.

below()

Finds element(s) located under the original element.

near()

Finds element(s) located close to the original element. The default distance to
consider an element near to some other is one hundred pixels. This locator is
overloaded to specify another distance.

toLeftOf()

Finds element(s) located at the left side of the original element.

toRightOf()

Finds element(s) located at the right side of the original element.

Example 3-15 shows a basic test using relative locators. Once again, we use the prac‐
tice web form to illustrate this feature.

Example 3-15. Test using relative locators

@Test
void testRelativeLocators() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");

 WebElement link = driver.findElement(By.linkText("Return to index"));
 RelativeBy relativeBy = RelativeLocator.with(By.tagName("input"));
 WebElement readOnly = driver.findElement(relativeBy.above(link));
 assertThat(readOnly.getAttribute("name")).isEqualTo("my-readonly");
}

We locate the link whose text is Return to index.

We specify the relative locator type, which will be by tag name the input.

We use a relative locator to find a web element (which should be an input filed)
above the original web element (i.e., a link).

We verify the element above the reference link is a read-only field (see Figure 3-2
to double-check it).

Locating WebElements | 77

Relative locators can be helpful for finding elements based on the
relative position of other elements. On the other hand, this strategy
can be very sensitive to page layout. For example, you need to be
careful when using relative locators in responsive pages since the
layout can vary depending on the viewport.

A challenging example
The examples we have seen so far are reasonably simple. Let’s now look at a more
complex use case. A nondefault element in the practice web is the date picker. As its
name suggests, this element provides a handy way to select dates using a web GUI.
Since the CSS framework used in the practice site is Bootstrap, I implemented the
date picker using bootstrap-datepicker. This date picker is attached to an input field.
When the user clicks on this field, a calendar appears on the web page (see
Figure 3-7). The user can select a given date by clicking the preferred date by navigat‐
ing to the different days, months, and years.

Figure 3-7. Date picker in the practice web form

We want to implement an automated test using Selenium WebDriver that selects the
current day and month but the previous year by interacting with the date picker GUI.
Example 3-16 shows the resulting implementation.

78 | Chapter 3: WebDriver Fundamentals

https://getbootstrap.com
https://github.com/uxsolutions/bootstrap-datepicker

To follow this example, I recommend you open the practice web
form (see URL in the code example) in your browser and use the
developer tools to inspect the internal elements of the date picker
selector, paying attention to the different selector strategies used.

Example 3-16. Test interacting with a date picker

@Test
void testDatePicker() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");

 // Get the current date from the system clock
 LocalDate today = LocalDate.now();
 int currentYear = today.getYear();
 int currentDay = today.getDayOfMonth();

 // Click on the date picker to open the calendar
 WebElement datePicker = driver.findElement(By.name("my-date"));
 datePicker.click();

 // Click on the current month by searching by text
 WebElement monthElement = driver.findElement(By.xpath(
 String.format("//th[contains(text(),'%d')]", currentYear)));
 monthElement.click();

 // Click on the left arrow using relative locators
 WebElement arrowLeft = driver.findElement(
 RelativeLocator.with(By.tagName("th")).toRightOf(monthElement));
 arrowLeft.click();

 // Click on the current month of that year
 WebElement monthPastYear = driver.findElement(RelativeLocator
 .with(By.cssSelector("span[class$=focused]")).below(arrowLeft));
 monthPastYear.click();

 // Click on the present day in that month
 WebElement dayElement = driver.findElement(By.xpath(String.format(
 "//td[@class='day' and contains(text(),'%d')]", currentDay)));
 dayElement.click();

 // Get the final date on the input text
 String oneYearBack = datePicker.getAttribute("value");
 log.debug("Final date in date picker: {}", oneYearBack);

 // Assert that the expected date is equal to the one selected in the
 // date picker
 LocalDate previousYear = today.minusYears(1);
 DateTimeFormatter dateFormat = DateTimeFormatter
 .ofPattern("MM/dd/yyyy");
 String expectedDate = previousYear.format(dateFormat);

Locating WebElements | 79

 log.debug("Expected date: {}", expectedDate);

 assertThat(oneYearBack).isEqualTo(expectedDate);
}

Get the current date from the system clock. We use the standard java.time API
for this.

Click on the date picker to open the calendar. We use a locator by name
(By.name("my-date")).

Click on the current month by searching by text. We use an XPath query for this
locator. After this step, the rest of the months of the year appear in the date picker
GUI.

Click on the left arrow using relative locators (i.e., right of the month element).
After this step, the calendar moves to the previous year.

Click on the current month of that year. We use a CSS selector here.

Click on the present day in that month. We use an XPath query in this step. After
the click, the date is selected, and the value appears in the input text.

Get the final date on the input text. We use a basic locator by attribute here.

Assert that the expected date is equal to the one selected in the date picker. We
calculate the expected date using standard Java, and as usual, AssertJ for the
assertion.

What Strategy Should You Use?
In this section, we review the different alternatives the Selenium WebDriver API
allows for locating elements in a web page. This topic is one of the most fundamental
routines for browser automation with Selenium WebDriver. Maybe you are asking
yourself: What is the best strategy I should use? As Dr. Alfred Lanning (character in
the novel and movie I, Robot) would say: “That, detective, is the right question.” In
my opinion, that is a difficult question, and it has no simple answer. In other words,
the answer to this question could be “it depends.” This section presents several hints
for identifying a suitable locator strategy for common use cases. First, Table 3-8 com‐
pares the different locating strategies.

80 | Chapter 3: WebDriver Fundamentals

Table 3-8. Pros, cons, and typical use cases of the different locating strategies

Locator Pros Cons Typical use case
By attribute (id,
name, class)

Easy to use These attributes are not
always available

Elements that define these attributes immutably
(i.e., it does not change dynamically)

By link text (total or
partial)

Easy to use Only available for links For text links

By tag name Easy to use Hard to select one specific
element when the tag
repeatedly appears on the
page

When the tag is unique, or the resulting DOM
node has a fixed position

By CSS selector or by
XPath

Very powerful It is not easy to write robust
selectors

For complex locators

Compound locators Easy way to
compose existing
locators

Limited to specific situations When looking for id or name (ByIdOrName),
when looking for nested elements
(ByChained), and when using several
strategies at the same time (ByAll)

Relative locators Human language
approach

It needs to be combined with
other locators

Find element based on the relative position
(above, below, near, etc.) of a known element

As you can see in this table, CSS selectors and XPath share the same pros, cons, and
use cases. Does it mean these strategies are the same? The answer is no. Both are very
powerful and allow the creation of complex locators. Nevertheless, there are relevant
distinctions between them. Table 3-9 summarizes these differences.

Table 3-9. Some differences between XPath and CSS selector

XPath CSS selector
XPath allows bidirectional location, i.e., the traversal can be from
parent to child and vice versa

CSS allows one-directional locations, i.e., the traversal is
from parent to child only

XPath is slower in terms of performance CSS has faster performance than XPath

XPath allows the identification of visible text on the screen using
the text() function

CSS does not allow locating elements by its text content

To better illustrate the difference between XPath and CSS selectors, Table 3-10 com‐
pares specific locators using both strategies.

Table 3-10. Examples comparing XPath and CSS selector

Locator XPath CSS selector
All elements //* *

All <div> elements //div div

Element by id //*[@id='my-id'] #my-id

Element by class //*[contains(@class='my-class')] .my-class

Element with attribute //*[@attr] *[attr]

Locating WebElements | 81

Locator XPath CSS selector

Find by text in a <div> //div[text()='search-string'] Not possible

First child of a <div> //div/*[1] div>*:first-child

All <div> with a link child //div[a] Not possible

Next element in a <div> //div/following-sibling::*[1] div + *

Previous element of a <div> //div/preceding-sibling::*[1] Not possible

In conclusion, we can see that XPath provides the most general strategy. Nevertheless,
there are some cases in which the CSS selectors offer a friendlier syntax (e.g., locating
by id or class) and better general performance.

Keyboard Actions
As introduced in Table 3-3, two main methods in WebDriver objects allow imperso‐
nating keyboard user actions: sendKeys() and clear(). Example 3-17 shows a test
using these methods.

Example 3-17. Test impersonating keyboard events

@Test
void testSendKeys() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");

 WebElement inputText = driver.findElement(By.name("my-text"));
 String textValue = "Hello World!";
 inputText.sendKeys(textValue);
 assertThat(inputText.getAttribute("value")).isEqualTo(textValue);

 inputText.clear();
 assertThat(inputText.getAttribute("value")).isEmpty();
}

We use the practice web form to locate the input text named my-text.

We simulate a keyboard typing on it using the method sendKeys().

We assess the input value is as expected.

We reset its content using clear().

We assess the input value is empty.

82 | Chapter 3: WebDriver Fundamentals

Manual Wait in Test Teardown
If you inspect the complete code of some tests in the repository example, you will dis‐
cover a pause in the teardown method using Thread.sleep(). As explained in “Wait‐
ing Strategies” on page 94, this type of wait is usually considered a bad smell (i.e., a
characteristic in the source code that can lead to undesirable effects). Nevertheless, I
have taken the liberty of using it in some examples for instructional purposes, i.e., to
ease the manual inspection of the browser when executing the test locally. I recom‐
mend dropping these lines if you plan to reuse the examples in an actual test suite.

File Uploading
There are several use cases in which we will need to impersonate keyboard actions
when interacting with web pages through Selenium WebDriver. The first one is file
uploading. The standard mechanism to upload files for web applications is using
<input> elements with type="file". For instance, the practice web form contains
one of these elements:

<input class="form-control" type="file" name="my-file">

The Selenium WebDriver API does not provide a mechanism to handle file inputs.
Instead, we should treat input elements for uploading files as regular text inputs, so
we need to simulate the user typing them. In particular, we need to type the absolute
file path to be uploaded. Example 3-18 illustrates how.

Example 3-18. Test uploading a file

@Test
void testUploadFile() throws IOException {
 String initUrl = "https://bonigarcia.dev/selenium-webdriver-java/web-form.html";
 driver.get(initUrl);

 WebElement inputFile = driver.findElement(By.name("my-file"));

 Path tempFile = Files.createTempFile("tempfiles", ".tmp");
 String filename = tempFile.toAbsolutePath().toString();
 log.debug("Using temporal file {} in file uploading", filename);
 inputFile.sendKeys(filename);

 driver.findElement(By.tagName("form")).submit();
 assertThat(driver.getCurrentUrl()).isNotEqualTo(initUrl);
}

We locate the input field using a by-name strategy.

We create a temporal file using standard Java.

Keyboard Actions | 83

We type its absolute path to the input field.

We submit the form.

We verify that the resulting page (defined in action form attribute) is different
from the initial web page.

The file path sent to the input file should correspond to an existing
archive in the machine running the test. Otherwise, the test fails
with an InvalidArgumentException exception. See “WebDriver
Exceptions” on page 142 in Chapter 5 for further details about
exceptions.

When uploading a file to a remote browser (as explained in Chapter 6), we need to
load the file from the local file system explicitly. The following line shows how to
specify a local file detector.

((RemoteWebDriver) driver).setFileDetector(new LocalFileDetector());

Range Sliders
A similar situation happens with <input type="range"> form fields. These elements
allow users to select a number in a range using a graphical slider. You can find an
example in the practice web form:

<input type="range" class="form-range" name="my-range" min="0" max="10" step="1"
 value="5">

Again, the Selenium WebDriver API does not provide any particular utility to handle
these fields. We can interact with them by impersonating keyboard actions with Sele‐
nium WebDriver. Example 3-19 shows a test interaction with these fields.

Example 3-19. Test selecting a number with a form slider

@Test
void testSlider() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");

 WebElement slider = driver.findElement(By.name("my-range"));
 String initValue = slider.getAttribute("value");
 log.debug("The initial value of the slider is {}", initValue);

 for (int i = 0; i < 5; i++) {
 slider.sendKeys(Keys.ARROW_RIGHT);
 }

84 | Chapter 3: WebDriver Fundamentals

 String endValue = slider.getAttribute("value");
 log.debug("The final value of the slider is {}", endValue);
 assertThat(initValue).isNotEqualTo(endValue);
}

We send a keyboard key to the range field available in the practice web form. We
use the class Keys available in the Selenium WebDriver API to handle special
keyboard characters. In particular, we send the right arrow key to the slider, and
as a result, it moves to the right (i.e., it increases the selected number within the
range).

We assert the resulting selected value is different from the one in the original
position.

Mouse Actions
In addition to the keyboard, the other primary input device for interacting with web
applications is the computer mouse. First of all, the single-click (also known as left-
click or simply click) is impersonated by the Selenium WebDriver API using the
method click(), which is one of the methods available per WebElement in Selenium
WebDriver. This section shows examples of two typical use cases using this feature:
web navigation and interaction with checkboxes and radio buttons in web forms.

Other common mouse actions are right-clicking (also known as context-click),
double-clicking, cursor movement, drag and drop, or mouseover. Selenium Web‐
Driver allows impersonating these actions using a helper class called Actions. See the
next section for further details. Finally, scrolling is possible in WebDriver by execut‐
ing JavaScript. I explain this feature in “Executing JavaScript” on page 101.

Web Navigation
Example 3-20 shows a test implementing automated web navigation with Selenium
WebDriver. This test locates links using XPath and clicks on them, invoking the
method click(). In the end, it reads the text content of the web page body and veri‐
fies it contains an expected string.

Example 3-20. Test navigating by clicking on links

@Test
void testNavigation() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");

 driver.findElement(By.xpath("//a[text()='Navigation']")).click();
 driver.findElement(By.xpath("//a[text()='Next']")).click();
 driver.findElement(By.xpath("//a[text()='3']")).click();

Mouse Actions | 85

 driver.findElement(By.xpath("//a[text()='2']")).click();
 driver.findElement(By.xpath("//a[text()='Previous']")).click();

 String bodyText = driver.findElement(By.tagName("body")).getText();
 assertThat(bodyText).contains("Lorem ipsum");
}

Checkboxes and Radio Buttons
Example 3-21 shows another basic use of the click() method for manipulating
checkboxes and radio buttons. To verify the expected state of these elements after the
click action, we use an assertion based on the result of the isSelected() method.

Example 3-21. Test interacting with checkboxes and radio buttons

@Test
void testNavigation() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");

 WebElement checkbox2 = driver.findElement(By.id("my-checkbox-2"));
 checkbox2.click();
 assertThat(checkbox2.isSelected()).isTrue();

 WebElement radio2 = driver.findElement(By.id("my-radio-2"));
 radio2.click();
 assertThat(radio2.isSelected()).isTrue();
}

User Gestures
Selenium WebDriver provides the class Actions, a powerful asset to automate differ‐
ent user actions, both for keyboard and mouse. This class follows the builder pattern.
This way, you can chain several methods (i.e., different actions) and perform all of
them at the end by calling build(). Table 3-11 summarizes the public methods
available in this class. We review these methods through examples in the following
subsections.

86 | Chapter 3: WebDriver Fundamentals

Table 3-11. Actions methods

Method Description
keyDown(CharSequence key)
keyDown(WebElement target,
 CharSequence key)

Send a single key (it could be a special character using the class Keys)
in the current position (or a given element). The key remains pressed
until calling to keyUp().

keyUp(CharSequence key)
keyUp(WebElement target,
 CharSequence key)

Release a key previously pressed with keyDown().

sendKeys(CharSequence... keys)
sendKeys(WebElement target,
 CharSequence... keys)

Send a key sequence in the current position (or a given element). This
method is different from WebElement#sendKeys(CharSe
quence...) in two ways: 1) Modifier keys (e.g., Keys.CONTROL,
Keys.SHIFT) are not released explicitly. 2) There is no refocus on the
element, so Keys.TAB should work.

clickAndHold()
clickAndHold(WebElement target)

Click without releasing the current position (or the middle of a given
element).

release()
release(WebElement target)

Release the left-click mouse button previously pressed with clickAnd
Hold().

click()
click(WebElement target)

Click on the current position (or a given element).

doubleClick()
doubleClick(WebElement target)

Double-click on the current position (or element).

contextClick()
contextClick(WebElement target)

Right-click on the current position (or element).

moveToElement(WebElement target)
moveToElement(WebElement target,
 int xOffset, int yOffset)

Move mouse cursor to the middle (or shifted to a given offset) of a
given element.

moveByOffset(int xOffset,
 int yOffset)

Move the mouse from its current position (0,0 by default) by the given
offset.

dragAndDrop(WebElement source,
 WebElement target)
dragAndDropBy(WebElement source,
 int xOffset, int yOffset)
dragAndDropBy(WebElement source,
 int xOffset, int yOffset)

This action consists of three steps: 1) Click and hold at the middle (or
shifted by a given offset) of the source element location. 2) Move the
mouse to the target element location. 3) Release the mouse click.

pause(long pause)
pause(Duration duration)

Perform a pause in the actions chain (in milliseconds or using a Java
Duration).

build() Generate a composite action containing all previous actions.

perform() Execute the composite action.

User Gestures | 87

Right-Click and Double-Click
You can find a demo page using three dropdown menus on the practice site (see
Figure 3-8). On this page, the first dropdown menu appears when clicking on its but‐
ton, the second one uses the right-click, and the third one requires a double-click.
Example 3-22 shows a test using this page to impersonate user gestures through the
WebDriver class Actions.

Figure 3-8. Practice web page with dropdown menus

Example 3-22. Test using context and double-click

@Test
void testContextAndDoubleClick() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/dropdown-menu.html");
 Actions actions = new Actions(driver);

 WebElement dropdown2 = driver.findElement(By.id("my-dropdown-2"));
 actions.contextClick(dropdown2).build().perform();
 WebElement contextMenu2 = driver.findElement(By.id("context-menu-2"));
 assertThat(contextMenu2.isDisplayed()).isTrue();

 WebElement dropdown3 = driver.findElement(By.id("my-dropdown-3"));
 actions.doubleClick(dropdown3).build().perform();
 WebElement contextMenu3 = driver.findElement(By.id("context-menu-3"));
 assertThat(contextMenu3.isDisplayed()).isTrue();
}

We use contextClick() in the middle dropdown menu.

We verify the middle menu is correctly displayed.

88 | Chapter 3: WebDriver Fundamentals

We use doubleClick() in the right dropdown menu.

We verify the right menu is correctly displayed.

Mouseover
The second example handling Actions uses a sample web page implementing a
mouseover. This page displays four images. Each one shows a text label below the
image when the mouse pointer is over. Example 3-23 contains a test that uses this
page. Figure 3-9 shows this page when the mouse is over the first picture.

Example 3-23. Test using mouseover

@Test
void testMouseOver() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/mouse-over.html");
 Actions actions = new Actions(driver);

 List<String> imageList = Arrays.asList("compass", "calendar", "award",
 "landscape");
 for (String imageName : imageList) {
 String xpath = String.format("//img[@src='img/%s.png']", imageName);
 WebElement image = driver.findElement(By.xpath(xpath));
 actions.moveToElement(image).build().perform();

 WebElement caption = driver.findElement(
 RelativeLocator.with(By.tagName("div")).near(image));

 assertThat(caption.getText()).containsIgnoringCase(imageName);
 }
}

We iterate a string list to locate the four images of the page.

We use XPath to find each web element.

We use moveToElement() to move the mouse pointer to the middle of each
image.

We use relative locators to find the displayed label.

We use assertions to verify that the text is as expected.

User Gestures | 89

Figure 3-9. Practice web page with mouse-over images

Drag and Drop
Example 3-24 illustrates the use of drag and drop. This test uses the practice web
shown in Figure 3-10.

Example 3-24. Test using drag and drop

@Test
void testDragAndDrop() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/drag-and-drop.html");
 Actions actions = new Actions(driver);

 WebElement draggable = driver.findElement(By.id("draggable"));
 int offset = 100;
 Point initLocation = draggable.getLocation();
 actions.dragAndDropBy(draggable, offset, 0)
 .dragAndDropBy(draggable, 0, offset)
 .dragAndDropBy(draggable, -offset, 0)
 .dragAndDropBy(draggable, 0, -offset).build().perform();
 assertThat(initLocation).isEqualTo(draggable.getLocation());

 WebElement target = driver.findElement(By.id("target"));
 actions.dragAndDrop(draggable, target).build().perform();
 assertThat(target.getLocation()).isEqualTo(draggable.getLocation());
}

We locate the draggable element.

90 | Chapter 3: WebDriver Fundamentals

We use dragAndDropBy() to move this element a fixed number of pixels (100)
four times (right, bottom, left, and up).

We assert the element position is the same as the beginning.

We find a second element (not draggable this time).

We use dragAndDrop() to move the draggable element to the second one.

We assert the position of both elements is the same.

Figure 3-10. Practice web page with a draggable element

Click and Hold
The following example shows complex user gestures, including click and hold. To
that aim, we practice with the web page in Figure 3-11.

Figure 3-11. Practice web page with a drawable canvas

User Gestures | 91

This page uses an open source JavaScript library called Signature Pad to draw signa‐
tures in HTML canvas using the mouse. Example 3-25 shows a test using it.

Example 3-25. Test drawing a circumference on a canvas

@Test
void testClickAndHold() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/draw-in-canvas.html");
 Actions actions = new Actions(driver);

 WebElement canvas = driver.findElement(By.tagName("canvas"));
 actions.moveToElement(canvas).clickAndHold();

 int numPoints = 10;
 int radius = 30;
 for (int i = 0; i <= numPoints; i++) {
 double angle = Math.toRadians(360 * i / numPoints);
 double x = Math.sin(angle) * radius;
 double y = Math.cos(angle) * radius;
 actions.moveByOffset((int) x, (int) y);
 }

 actions.release(canvas).build().perform();
}

We locate the canvas by tag name.

We move the mouse to this element with moveToElement() and then add the
action clickAndHold() (for drawing into the canvas) to the actions pipeline.

We iterate using a fixed number of points, using the equation to find the points in
a circumference.

We use the circumference points (x and y) to move the mouse by offset (move
ByOffset()). Since the click is held from the previous step, the resulting com‐
pound action will move the mouse while the click button is pressed.

We release the click, build the action, and carry out the whole chain. As a result, a
circumference should appear on the canvas.

Copy and Paste
This last example for user gestures automates a pervasive user action: copy and paste
using the keyboard. Here, we use the web form available on the practice website.
Example 3-26 shows a test impersonating copy and paste.

92 | Chapter 3: WebDriver Fundamentals

https://github.com/szimek/signature_pad

Example 3-26. Test impersonating copy and paste

@Test
void testCopyAndPaste() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");
 Actions actions = new Actions(driver);

 WebElement inputText = driver.findElement(By.name("my-text"));
 WebElement textarea = driver.findElement(By.name("my-textarea"));

 Keys modifier = SystemUtils.IS_OS_MAC ? Keys.COMMAND : Keys.CONTROL;
 actions.sendKeys(inputText, "hello world").keyDown(modifier)
 .sendKeys(inputText, "a").sendKeys(inputText, "c")
 .sendKeys(textarea, "v").build().perform();

 assertThat(inputText.getAttribute("value"))
 .isEqualTo(textarea.getAttribute("value"));
}

We locate two web elements: an input text and a text area.

We use a modifier key for sending the combination Ctrl + C for copying (in Win‐
dows and Linux) or Cmd + C for copying (in macOS). To this aim, we use the
class SystemUtils, available in the open source library Apache Commons IO
(this dependency is used transitively in the Maven/Gradle project).

We implement the actions chain composed of the following steps:

1. Send the char sequence hello world to the input text.
2. Press the key modifier (Ctrl or Cmd, depending on the operating system).

Remember that this key remains pressed until we explicitly release it.
3. We send the key a to the input text. Since the modifier is active, the resulting

combination is Ctrl + A (or Cmd + A), and as a result, all the text present in
the input text is selected.

4. We send the key c to the input text. Again, since the modifier is active, the
combination is Ctrl + C (or Cmd + C), and the input text is copied to the
clipboard.

5. We send the key v to the text area. This means sending Ctrl + V (or Cmd +
V), and the clipboard content is pasted to the text area.

We assert the content of both elements (input text and text area) is the same at
the end of the text.

User Gestures | 93

https://commons.apache.org/proper/commons-io

Waiting Strategies
Web applications are client-server distributed services in which the clients are the
web browsers and the web servers are usually remote hosts. The intermediate net‐
work latency could affect the reliability of a WebDriver test. For instance, in the case
of high-latency networks or overloaded servers, a slow response might negatively
affect the expected conditions of WebDriver tests. In addition, modern web applica‐
tions tend to be dynamic and asynchronous. Nowadays, JavaScript allows executing
nonblocking (i.e., asynchronous) operations using different mechanisms, such as call‐
backs, promises, or async/await. In addition, we can retrieve data from other servers
asynchronously, for example, using AJAX (Asynchronous JavaScript and XML) or
REST (REpresentational State Transfer) services.

All in all, it is of paramount importance to have mechanisms pause and wait for cer‐
tain conditions in our WebDriver tests. For this reason, the Selenium WebDriver API
provides different waiting assets. The three principal waiting strategies are implicit,
explicit, and fluent waits. The following subsections explain and show examples.

For waiting in Java, you might think about including
Thread.sleep() commands in your code. On the one hand, it is a
simple solution, but on the other hand, it is considered a bad smell
(i.e., a weak sign) that could lead to unreliable tests (since the delay
conditions can change). As a general rule, I strongly discourage
you from using it. Instead, consider using the aforementioned wait
strategies.

Implicit Wait
The first waiting strategy provided by Selenium WebDriver is called implicit. This
mechanism allows specifying an amount of time before throwing an exception when
finding an element. By default, this wait has a value of zero seconds (i.e., it does not
wait at all). But when we define an implicit wait value, Selenium WebDriver polls the
DOM during the implicit wait value when trying to find an element. The poll time is
specific to the driver implementation and is frequently less than five hundred ms. If
the element is present in the elapsed time, the script continues. Otherwise, it throws
an exception.

Example 3-27 illustrates this strategy. This test uses a practice page (see Figure 3-12)
that dynamically loads several images into the DOM. Since these images are
not available just before the page is loaded, we need to wait for these images to be
available.

94 | Chapter 3: WebDriver Fundamentals

Figure 3-12. Practice web page loading images

Example 3-27. Test using an implicit wait in the “loading images” page

@Test
void testImplicitWait() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/loading-images.html");
 driver.manage().timeouts().implicitlyWait(Duration.ofSeconds(10));

 WebElement landscape = driver.findElement(By.id("landscape"));
 assertThat(landscape.getAttribute("src"))
 .containsIgnoringCase("landscape");
}

Before interacting with the elements, we specify an implicit wait strategy. In this
case, we set up a timeout of 10 seconds.

In the following calls, we use the Selenium WebDriver API as usual.

You can play with this feature by dropping the implicit wait from
the test (step 1). If you do that, you will notice that the test fails in
step 2 due to a NoSuchElementException.

Although supported by the Selenium WebDriver API, implicit waits have different
inconveniences you need to know. First, an implicit wait only works on finding ele‐
ments. Second, we cannot customize its behavior since its implementation is

Waiting Strategies | 95

driver-specific. Finally, and since implicit waits are applied globally, checking for the
absence of web elements usually increases the execution time for the entire script. For
these reasons, implicit waits are typically considered bad practice in most cases, and
explicit and fluent waits are preferred instead.

Explicit Wait
The second waiting strategy, called explicit, allows pausing the test execution a maxi‐
mum amount of time until a specific condition happens. To use this strategy, we need
to create an instance of WebDriverWait, using the WebDriver object as the first con‐
structor argument, and an instance of Duration as the second argument (to specify
the timeout).

Selenium WebDriver provides a comprehensive set of expected conditions using the
ExpectedConditions class. These conditions are very readable, and it does not
require further explanation to understand their purpose. I recommend you use an
autocomplete feature in your favorite IDE to discover all the possibilities. For exam‐
ple, Figure 3-13 shows this list in Eclipse.

Figure 3-13. Autocomplete in Eclipse for the ExpectedConditions class

Example 3-28 shows a test using an explicit wait. In the example, we use the
presenceofElementLocated condition to wait until one of the images is available on
the practice web page.

96 | Chapter 3: WebDriver Fundamentals

Example 3-28. Test using an explicit wait in the “loading images” page

@Test
void testExplicitWait() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/loading-images.html");
 WebDriverWait wait = new WebDriverWait(driver, Duration.ofSeconds(10));

 WebElement landscape = wait.until(ExpectedConditions
 .presenceOfElementLocated(By.id("landscape")));
 assertThat(landscape.getAttribute("src"))
 .containsIgnoringCase("landscape");
}

We create the wait instance. In this case, the selected timeout is 10 seconds.

We explicitly wait for a given condition (in this case, the presence of a given ele‐
ment) by invoking the until() method in the WebDriverWait object. To achieve
a more readable statement, you can also statically import this expected condition
(presenceOfElementLocated). In this book, I decided to keep the class name
(ExpectedConditions) in these conditions to ease the autocomplete feature in
IDEs as described before.

Example 3-29 shows another test using explicit waits. This test uses another practice
web page called “slow calculator,” which contains a GUI of a basic calculator, tuned to
wait a configurable time to get the result of basic arithmetic operations (by default,
five seconds). Figure 3-14 shows a screenshot of this page.

Example 3-29. Test using an explicit wait in the “slow calculator” page

@Test
void testSlowCalculator() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/slow-calculator.html");

 // 1 + 3
 driver.findElement(By.xpath("//span[text()='1']")).click();
 driver.findElement(By.xpath("//span[text()='+']")).click();
 driver.findElement(By.xpath("//span[text()='3']")).click();
 driver.findElement(By.xpath("//span[text()='=']")).click();

 // ... should be 4, wait for it
 WebDriverWait wait = new WebDriverWait(driver, Duration.ofSeconds(10));
 wait.until(ExpectedConditions.textToBe(By.className("screen"), "4"));
}

We use XPath locators to click the buttons corresponding to operation 1 + 3.

Waiting Strategies | 97

Since the test should wait until the result is ready, we explicitly wait for that. In
this case, the condition is the text of the element with a class name screen is
equal to 4.

Figure 3-14. Practice web page with the “slow calculator” demo

Fluent Wait
The last strategy is a fluent wait. This mechanism is a generalization of explicit waits.
In other words, we use fluent waits for pausing the test until certain conditions, but in
addition, fluent waits provide fine-grained configuration capabilities. Table 3-12 sum‐
marizes the methods available in FluentWait. As its name suggests, this class pro‐
vides a fluent API, and therefore, we can chain several invocations in the same line.
Example 3-30 shows a test using fluent wait.

Table 3-12. Fluent wait methods

Method Description
withTimeout(Duration timeout) Timeout using Java Duration

pollingEvery(Duration interval) How often the condition is evaluated (five hundred ms
by default)

withMessage(String message)
withMessage(Supplier<String> messageSupplier)

Custom error message

ignoring(Class<? extends Throwable> exceptionType)
ignoring(Class<? extends Throwable> firstType,
 Class<? extends Throwable> secondType)
ignoreAll(Collection<Class<? extends Throwable>>
 types)

Ignore specific exceptions while waiting for a
condition

98 | Chapter 3: WebDriver Fundamentals

Method Description
until(Function<? super T, V> isTrue) Expected condition

Example 3-30. Test using a fluent wait

@Test
void testFluentWait() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/loading-images.html");
 Wait<WebDriver> wait = new FluentWait<>(driver)
 .withTimeout(Duration.ofSeconds(10))
 .pollingEvery(Duration.ofSeconds(1))
 .ignoring(NoSuchElementException.class);

 WebElement landscape = wait.until(ExpectedConditions
 .presenceOfElementLocated(By.id("landscape")));
 assertThat(landscape.getAttribute("src"))
 .containsIgnoringCase("landscape");
}

As you can see, this test is very similar to Example 3-28, although using a Fluent
Wait instance, we can specify additional characteristics. In this case, we change
the poll time to one second.

The class WebDriverWait (presented in the previous subsection)
extends the generic class FluentWait. Thus, you can use all the
methods shown in Table 3-12 for explicit waits too.

Related Features in Selenium WebDriver
In addition to the previously introduced waiting strategies, there are other comple‐
mentary characteristics in Selenium WebDriver you should be aware of:

Loading strategies
Selenium WebDriver allows specifying different approaches for page loading.
This feature is accessible through browser-specific capabilities (e.g., using
ChromeOptions, FirefoxOptions, etc.). For this reason, I explain this feature in
“Page Loading Strategies” on page 151.

Timeouts
Selenium WebDriver allows specifying the maximum elapsed time for page and
script loading. I explain this feature in “Timeouts” on page 110.

Waiting Strategies | 99

Summary and Outlook
This chapter presented the foundations of the Selenium WebDriver API. First, you
learned how to create and shut down WebDriver instances. These objects represent a
browser controlled with Selenium WebDriver. This way, we use an instance of Chrome
Driver for Chrome, FirefoxDriver for Firefox, etc. Second, you looked at Web
Element, a class representing different web page elements (e.g., links, images, form
fields, etc.). Selenium WebDriver provides several strategies to locate web elements:
by HTML attribute (id, name, or class), tag name, link text (complete or partial), CSS
selector, and XPath. We also looked at a brand-new strategy of Selenium WebDriver 4
called relative locators. Then, we covered user actions’ impersonation, using the key‐
board and the mouse. You can use these actions from simple actions (e.g., clicking a
link, filling a text input, etc.) to complex user gestures (e.g., drag and drop, click and
hover, etc.). Finally, we examined the ability to wait in Selenium WebDriver tests.
This feature is critical due to the current distributed, dynamic, and asynchronous
nature of web applications. There are three main wait strategies in Selenium Web‐
Driver: implicit (specify a general timeout to wait for elements), explicit (pause test
execution until a given condition), and fluent (extension of an explicit wait with some
fine-grained setup).

The next chapter continues digging into the Selenium WebDriver API. In particular,
Chapter 4 reviews those interoperable features in different browsers (Chrome, Edge,
Firefox, etc.). Among these features, you will discover how to execute JavaScript,
specify event listeners, configure timeouts for page and script loading, manage the
browser history, make screenshots, manipulate cookies, manipulate dropdown lists
(i.e., selects and data lists), handle window targets (i.e., tabs, frames, and iframes) and
dialog boxes (i.e., alerts, prompts, confirmation, and modal pop-ups), use web stor‐
age, and understand the WebDriver exceptions.

100 | Chapter 3: WebDriver Fundamentals

CHAPTER 4

Browser-Agnostic Features

This chapter reviews those features of Selenium WebDriver that are interoperable in
different web browsers. In this group, a relevant multipurpose characteristic is exe‐
cuting JavaScript. Also, the Selenium WebDriver API allows configuring timeouts for
page and script loading. Another convenient feature is making screenshots of the
browser screen, or only the portion corresponding to a given element. Then, we can
manage different aspects of the controlled browser using WebDriver, such as browser
size and position, history, or cookies. Then, WebDriver provides various assets for
controlling specific web elements, such as dropdown lists (i.e., HTML select fields
and data lists), navigation targets (i.e., windows, tabs, frames, and iframes), or dialog
boxes (i.e., alerts, prompts, confirmations, and modal dialogs). Finally, we discover
how to handle local and session data using web storage, implement event listeners,
and use the exceptions provided by the Selenium WebDriver API.

Executing JavaScript
JavaScript is a high-level programming language supported by all major browsers. We
can use JavaScript in the client side of web applications for a wide variety of opera‐
tions, such as DOM manipulation, user interaction, handling requests-responses
from remote servers, or working with regular expressions, among many other func‐
tions. Luckily for test automation, Selenium WebDriver allows injecting and execut‐
ing arbitrary pieces of JavaScript. To that aim, Selenium WebDriver API provides the
interface JavascriptExecutor. Table 4-1 introduces the available public methods in
this interface grouped into three categories: synchronous, pinned, and asynchronous
scripts. The subsections following provide more details and illustrate their use
through different examples.

101

Table 4-1. JavascriptExecutor methods

Category Method Return Description
Synchronous
scripts

executeScript(
 String script,
 Object... args)

Object Execute JavaScript code on the current page.

Pinned scripts pin(String
 script)

ScriptKey Attach a piece of JavaScript to a WebDriver session. The
pinned scripts can be used multiple times while the
WebDriver session is alive.

unpin(ScriptKey
 key)

void Detach a previously pinned script to the WebDriver
session.

getPinnedScripts() Set<ScriptKey> Collect all pinned scripts (each one identified by a
unique ScriptKey).

executeScript(
 ScriptKey key,
 Object... args)

Object Call previously pinned script (identified with its
ScriptKey).

Asynchronous
scripts

executeAsyncScript(
 String script,
 Object... args)

Object Execute JavaScript code (typically an asynchronous
operation) on the current page. The difference with
executeScript() is that scripts executed with
executeAsyncScript() must explicitly signal
their termination by invoking a callback function. By
convention, this callback is injected into the script as its
last argument.

Any driver object that inherits from the class RemoteWebDriver also implements the
JavascriptExecutor interface. Therefore, when using a major browser (e.g., Chrome
Driver, FirefoxDriver, etc.) declared using the generic WebDriver interface, we can
cast it to JavascriptExecutor as shown in the following snippet. Then, we can use
the executor (using variable js in the example) to invoke the methods presented in
Table 4-1.

WebDriver driver = new ChromeDriver();
JavascriptExecutor js = (JavascriptExecutor) driver;

Synchronous Scripts
The method executeScript() of a JavascriptExecutor object allows executing a
piece of JavaScript in the context of the current web page in a WebDriver session. The
invocation of this method (in Java) blocks the control flow until the script terminates.
Therefore, we typically use this method for executing synchronous scripts in a web
page under test. The method executeScript() allows two arguments:

String script

Mandatory JavaScript fragment to be executed. This code is executed in the body
of the current page as an anonymous function (i.e., a JavaScript function without
a name).

102 | Chapter 4: Browser-Agnostic Features

Object... args

Optional arguments script. These arguments must be one of the following types:
number, boolean, string, WebElement, or a List of these types (otherwise, Web‐
Driver throws an exception). These arguments are available in the injected script
using the arguments built-in JavaScript variable.

When the script returns some value (i.e., the code contains a return statement), the
Selenium WebDriver executeScript() method also returns a value in Java (other‐
wise, executeScript() returns null). The possible returned types are:

WebElement

When returning an HTML element

Double

For decimals

Long

For nondecimal numbers

Boolean

For boolean values

List<Object>

For arrays

Map<String, Object>

For key-value collections

String

For all other cases

The situations that require executing JavaScript with Selenium WebDriver are very
heterogeneous. The following subsections review two cases where the Selenium Web‐
Driver does not provide built-in features, and instead, we need to use JavaScript to
automate them: scrolling a web page and handling a color picker in a web form.

Scrolling
As explained in Chapter 3, Selenium WebDriver allows impersonating different
mouse actions, including click, right-click, or double-click, among others. Neverthe‐
less, scrolling down or up a web page is not possible using the Selenium WebDriver
API. Instead, we can achieve this automation easily by executing a simple JavaScript
line. Example 4-1 shows a basic example using a practice web page (see the URL of
this page in the first line of the test method).

Executing JavaScript | 103

Example 4-1. Test executing JavaScript to scroll down a pixels amount

@Test
void testScrollBy() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/long-page.html");
 JavascriptExecutor js = (JavascriptExecutor) driver;

 String script = "window.scrollBy(0, 1000);";
 js.executeScript(script);
}

Open a practice web page containing very long text (see Figure 4-1).

Cast the driver object to JavascriptExecutor. We will use the variable js to
execute JavaScript in the browser.

Execute a piece of JavaScript code. In this case, we call the JavaScript function
scrollBy() to scroll the document by a given amount (in this case, 1,000 px
down). Notice that this fragment does not use return, and therefore, we do not
receive any returned object in the Java logic. In addition, we are not passing any
argument to the script.

Figure 4-1. Practice web page with long content

Example 4-2 shows another test using scrolling and the same example web page as
before. This time, instead of moving a fixed number of pixels, we move the document
scroll until the last paragraph in the web page.

104 | Chapter 4: Browser-Agnostic Features

Example 4-2. Test executing JavaScript to scroll down to a given element

@Test
void testScrollIntoView() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/long-page.html");
 JavascriptExecutor js = (JavascriptExecutor) driver;
 driver.manage().timeouts().implicitlyWait(Duration.ofSeconds(10));

 WebElement lastElememt = driver
 .findElement(By.cssSelector("p:last-child"));
 String script = "arguments[0].scrollIntoView();";
 js.executeScript(script, lastElememt);
}

To make this test robust, we specify an implicit timeout. Otherwise, the test
might fail if the page is not entirely loaded when executing the subsequent
commands.

We locate the last paragraph in the web page using a CSS selector.

We define the script to be injected into the page. Notice the script does not return
any value, but as a novelty, it uses the first function argument to invoke the Java‐
Script function scrollIntoView().

We execute the previous script, passing the located WebElement as an argument.
This element will be the first argument for the script (i.e., arguments[0]).

The last example of scrolling is infinite scroll. This technique enables the dynamic
loading of more content when the user reaches the end of the web page. Automating
this kind of web page is an instructive use case since it involves different aspects of
the Selenium WebDriver API. For example, you can use a similar approach to crawl
web pages using Selenium WebDriver. Example 4-3 shows a test using an infinite
scroll page.

Example 4-3. Test executing JavaScript in an infinite scroll page

@Test
void testInfiniteScroll() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/infinite-scroll.html");
 JavascriptExecutor js = (JavascriptExecutor) driver;
 WebDriverWait wait = new WebDriverWait(driver, Duration.ofSeconds(10));

 By pLocator = By.tagName("p");
 List<WebElement> paragraphs = wait.until(
 ExpectedConditions.numberOfElementsToBeMoreThan(pLocator, 0));
 int initParagraphsNumber = paragraphs.size();

Executing JavaScript | 105

 WebElement lastParagraph = driver.findElement(
 By.xpath(String.format("//p[%d]", initParagraphsNumber)));
 String script = "arguments[0].scrollIntoView();";
 js.executeScript(script, lastParagraph);

 wait.until(ExpectedConditions.numberOfElementsToBeMoreThan(pLocator,
 initParagraphsNumber));
}

We define an explicit wait since we need to pause the test until the new content is
loaded.

We find the initial number of paragraphs on the page.

We locate the last paragraph of the page.

We scroll down into this element.

We wait until more paragraphs are available on the page.

Color picker
A color picker in HTML is an input type that allows users to select a color by clicking
and dragging the cursor using a graphical area. The practice web form contains one
of these elements (see Figure 4-2).

Figure 4-2. Color picker in the practice web form

106 | Chapter 4: Browser-Agnostic Features

The following code shows the HTML markup for the color picker. Notice that it sets
an initial color value (otherwise, the default color is black).

<input type="color" class="form-control form-control-color" name="my-colors"
 value="#563d7c">

Example 4-4 illustrates how to interact with this color picker. Because the Selenium
WebDriver API does not provide any asset to control color pickers, we use JavaScript.
In addition, this test also illustrates the use of Color, a support class available in the
Selenium WebDriver API for working with colors.

Example 4-4. Test executing JavaScript to interact with a color picker

@Test
void testColorPicker() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");
 JavascriptExecutor js = (JavascriptExecutor) driver;

 WebElement colorPicker = driver.findElement(By.name("my-colors"));
 String initColor = colorPicker.getAttribute("value");
 log.debug("The initial color is {}", initColor);

 Color red = new Color(255, 0, 0, 1);
 String script = String.format(
 "arguments[0].setAttribute('value', '%s');", red.asHex());
 js.executeScript(script, colorPicker);

 String finalColor = colorPicker.getAttribute("value");
 log.debug("The final color is {}", finalColor);
 assertThat(finalColor).isNotEqualTo(initColor);
 assertThat(Color.fromString(finalColor)).isEqualTo(red);
}

We locate the color picker by name.

We read the initial value of the color picker (it should be #563d7c).

We define a color to work with using the following RGBA components: red=255
(maximum value), green=0 (minimum value), blue=0 (minimum value), and
alpha=1 (maximum value, i.e., fully opaque).

We use JavaScript to change the value selected in the color picker. Alternatively,
we can change the selected color invoking the statement colorPicker.send
Keys(red.asHex());.

We read the resulting value of the color picker (it should be #ff0000).

Executing JavaScript | 107

We assert that the color is different from the initial value, but as expected.

Pinned Scripts
The Selenium WebDriver API allows you to pin scripts in Selenium WebDriver 4.
This feature enables attaching JavaScript fragments to a WebDriver session, assigning
a unique key to each snippet, and executing these snippets on demand (even on dif‐
ferent web pages). Example 4-5 shows a test using pinned scripts.

Example 4-5. Test executing JavaScript as pinned scripts

@Test
void testPinnedScripts() {
 String initPage = "https://bonigarcia.dev/selenium-webdriver-java/";
 driver.get(initPage);
 JavascriptExecutor js = (JavascriptExecutor) driver;

 ScriptKey linkKey = js
 .pin("return document.getElementsByTagName('a')[2];");
 ScriptKey firstArgKey = js.pin("return arguments[0];");

 Set<ScriptKey> pinnedScripts = js.getPinnedScripts();
 assertThat(pinnedScripts).hasSize(2);

 WebElement formLink = (WebElement) js.executeScript(linkKey);
 formLink.click();
 assertThat(driver.getCurrentUrl()).isNotEqualTo(initPage);

 String message = "Hello world!";
 String executeScript = (String) js.executeScript(firstArgKey, message);
 assertThat(executeScript).isEqualTo(message);

 js.unpin(linkKey);
 assertThat(js.getPinnedScripts()).hasSize(1);
}

We attach a JavaScript fragment to locate an element in the web page. Notice that
we could do the same with the standard WebDriver API. Nevertheless, we use
this approach for demo purposes.

We attach another piece of JavaScript that returns whatever we pass to it as a first
parameter.

We read the set of pinned scripts.

We assert the number of pinned scripts is as expected (i.e., 2).

108 | Chapter 4: Browser-Agnostic Features

We execute the first pinned script. As a result, we get the third link in the web
page as a WebElement in Java.

We click on this link, which should correspond to the practice web link. As a
result, the browser should navigate to that page.

We assert the current URL is different from the initial one.

We execute the second pinned script. Notice that it is possible to run the pinned
script even though the page has changed in the browser (since the script is
attached to the session and not to a single page).

We assert the returned message is as expected.

We unpin one of the scripts.

We verify the number of pinned scripts is as expected (i.e., 1 at this point).

Asynchronous Scripts
The method executeAsyncScript() of the JavascriptExecutor interface allows
executing JavaScript scripts in the context of a web page using Selenium WebDriver.
In the same way that executeScript() explained previously, executeAsyncScript()
executes an anonymous function with the provided JavaScript code in the body of the
current page. The execution of this function blocks the Selenium WebDriver control
flow. The difference is that in executeAsyncScript(), we must explicitly signal the
script termination by invoking a done callback. This callback is injected into the exe‐
cuted script as the last argument (i.e., arguments[arguments.length - 1]) in the
corresponding anonymous function. Example 4-6 shows a test using this mechanism.

Example 4-6. Test executing asynchronous JavaScript

@Test
void testAsyncScript() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 JavascriptExecutor js = (JavascriptExecutor) driver;

 Duration pause = Duration.ofSeconds(2);
 String script = "const callback = arguments[arguments.length - 1];"
 + "window.setTimeout(callback, " + pause.toMillis() + ");";

 long initMillis = System.currentTimeMillis();
 js.executeAsyncScript(script);
 Duration elapsed = Duration
 .ofMillis(System.currentTimeMillis() - initMillis);

Executing JavaScript | 109

 log.debug("The script took {} ms to be executed", elapsed.toMillis());
 assertThat(elapsed).isGreaterThanOrEqualTo(pause);
}

We define a pause time of 2 seconds.

We define the script to be executed. In the first line, we define a constant for the
callback (i.e., the last script argument). After that, we use the JavaScript function
window.setTimeout() to pause the script execution for a given amount of time.

We get the current system time (in milliseconds).

We execute the script. If everything works as expected, the test execution blocks
in this line for second seconds (as defined in step 1).

We calculate the time required to execute the previous line.

We assert the elapsed time is as expected (typically, some milliseconds above the
defined pause time).

You can find an additional example that executes an asynchronous
script on “Notifications” on page 162.

Timeouts
Selenium WebDriver allows specifying three types of timeouts. We can use them by
invoking the method manage().timeouts() in the Selenium WebDriver API. The
first timeout is the implicit wait, already explained in “Implicit Wait” on page 94 (as
part of waiting strategies). The other options are page loading and script loading
timeouts, explained next.

Page Loading Timeout
The page loading timeout provides a time limit to interrupt a navigation attempt. In
other words, this timeout limits the time in which a web page is loaded. When this
timeout (which has a default value of 30 seconds) is exceeded, an exception is thrown.
Example 4-7 shows an example of this timeout. As you can see, this piece of code is a
dummy implementation of a negative test. In other words, it checks unexpected con‐
ditions in the SUT.

110 | Chapter 4: Browser-Agnostic Features

Example 4-7. Test using a page loading timeout

@Test
void testPageLoadTimeout() {
 driver.manage().timeouts().pageLoadTimeout(Duration.ofMillis(1));

 assertThatThrownBy(() -> driver
 .get("https://bonigarcia.dev/selenium-webdriver-java/"))
 .isInstanceOf(TimeoutException.class);
}

We specify the minimum possible page loading timeout, which is one
millisecond.

We load a web page. This invocation (implemented as Java lambda) will fail since
it is impossible to load that web page in less than one millisecond. For this rea‐
son, the exception TimeoutException is expected to be thrown in the lambda,
using the AssertJ method assertThatThrownBy.

You can play with this test by removing the timeout declaration
(i.e., step 1). If you do that, the test will fail since an exception is
expected but not thrown.

Script Loading Timeout
The script loading timeout provides a time limit to interrupt a script that is being eval‐
uated. This timeout has a default value of three hundred seconds. Example 4-8 shows
a test using a script loading timeout.

Example 4-8. Test using a script loading timeout

@Test
void testScriptTimeout() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 JavascriptExecutor js = (JavascriptExecutor) driver;
 driver.manage().timeouts().scriptTimeout(Duration.ofSeconds(3));

 assertThatThrownBy(() -> {
 long waitMillis = Duration.ofSeconds(5).toMillis();
 String script = "const callback = arguments[arguments.length - 1];"
 + "window.setTimeout(callback, " + waitMillis + ");";
 js.executeAsyncScript(script);
 }).isInstanceOf(ScriptTimeoutException.class);
}

Timeouts | 111

We define a script timeout of three seconds. This means that a script lasting for
more than that time will throw an exception.

We execute an asynchronous script that pauses the execution of five seconds.

The script execution time is greater than the configured script timeout, resulting
in a ScriptTimeoutException. Again, this example is a negative test, i.e.,
designed to expect this exception.

Screenshots
Selenium WebDriver is used mainly to carry out end-to-end functional testing of web
applications. In other words, we use it to verify that web applications behave as
expected by interacting with their user interface (i.e., using a web browser). This
approach is very convenient to automate high-level user scenarios, but it also presents
different difficulties. One of the main challenges in end-to-end testing is to diagnose
the underlying cause of a failed test. Supposing the failure is legitimate (i.e., not
induced by a poorly implemented test), the root cause might be diverse: the client
side (e.g., incorrect JavaScript logic), the server side (e.g., internal exception), or the
integration with other components (e.g., inadequate access to the database), among
other reasons. One of the most pervasive mechanisms used in Selenium WebDriver
for failure analysis is making browser screenshots. This section presents the mecha‐
nisms provided by the Selenium WebDriver API.

“Failure Analysis” on page 265 reviews the framework-specific
techniques to determine when a test has failed to carry out differ‐
ent failure analysis techniques, such as screenshots, recordings, and
log gathering.

Selenium WebDriver provides the interface TakesScreenshot for making browser
screenshots. Any driver object inheriting from RemoteWebDriver (see Figure 2-2) also
implements this interface. Thus, we can cast a WebDriver object that instantiates one
of the major browsers (e.g., ChromeDriver, FirefoxDriver, etc.) as follows:

WebDriver driver = new ChromeDriver();
TakesScreenshot ts = (TakesScreenshot) driver;

112 | Chapter 4: Browser-Agnostic Features

The interface TakesScreenshot only provides a method called getScreenshotAs(Out
putType<X> target) to make screenshots. The parameter OutputType<X> target
determines the screenshot type and the returned value. Table 4-2 shows the available
alternatives for this parameter.

Table 4-2. OutputType parameters

Parameter Description Return Example
OutputType.FILE Make screenshot as a PNG file (located in a temporary

system directory)
File File screenshot =

 ts.getScreenshotAs(
 OutputType.FILE);

OutputType.BASE64 Make a screenshot in Base64 format (i.e., encoded as
an ASCII string)

String String screenshot =
 ts.getScreenshotAs(
 OutputType.BASE64);

OutputType.BYTES Make a screenshot as a raw byte array byte[] byte[] screenshot =
 ts.getScreenshotAs(
 OutputType.BYTES);

The method getScreenshotAs() allows making screenshots of the
browser viewport. In addition, Selenium WebDriver 4 allows creat‐
ing full-page screenshots using different mechanisms (see “Full-
page screenshot” on page 183).

Example 4-9 shows a test for taking a browser screenshot in PNG format.
Example 4-10 shows another test for creating a screenshot as a Base64 string. The
resulting screenshot is shown in Figure 4-3.

Example 4-9. Test making a screenshot as a PNG file

@Test
void testScreenshotPng() throws IOException {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 TakesScreenshot ts = (TakesScreenshot) driver;

 File screenshot = ts.getScreenshotAs(OutputType.FILE);
 log.debug("Screenshot created on {}", screenshot);

 Path destination = Paths.get("screenshot.png");
 Files.move(screenshot.toPath(), destination, REPLACE_EXISTING);
 log.debug("Screenshot moved to {}", destination);

 assertThat(destination).exists();
}

Screenshots | 113

We make the browser screen a PNG file.

This file is located in a temporary folder by default, so we move it to a new file
called screenshot.png (in the root project folder).

We use standard Java to move the screenshot file to the new location.

We use assertions to verify that the target file exists.

Figure 4-3. Browser screenshot of the practice site index page

114 | Chapter 4: Browser-Agnostic Features

Example 4-10. Test making a screenshot as Base64

@Test
void testScreenshotBase64() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 TakesScreenshot ts = (TakesScreenshot) driver;

 String screenshot = ts.getScreenshotAs(OutputType.BASE64);
 log.debug("Screenshot in base64 "
 + "(you can copy and paste it into a browser navigation bar to watch it)\n"
 + "data:image/png;base64,{}", screenshot);
 assertThat(screenshot).isNotEmpty();
}

We make the browser screen in Base64 format.

We append the prefix data:image/png;base64, to the Base64 string and log it in
the standard output. You can copy and paste this resulting string in a browser
navigation bar to display the picture.

We assert that the screenshot string has content.

Logging the screenshot in Base64 as presented in the previous
example could be very useful for diagnosing failures when running
tests in CI servers in which we do not have access to the file system
(e.g., GitHub Actions).

WebElement Screenshots
The WebElement interface extends the TakesScreenshot interface. This way, it is pos‐
sible to make partial screenshots of the visible content of a given web element. (See
Example 4-11.) Notice that this test is very similar to the previous one using PNG
files, but in this case, we invoke the method getScreenshotAs() directly using a web
element. Figure 4-4 shows the resulting screenshot.

Example 4-11. Test making a partial screenshot as a PNG file

@Test
void testWebElementScreenshot() throws IOException {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");

 WebElement form = driver.findElement(By.tagName("form"));
 File screenshot = form.getScreenshotAs(OutputType.FILE);
 Path destination = Paths.get("webelement-screenshot.png");
 Files.move(screenshot.toPath(), destination, REPLACE_EXISTING);

Screenshots | 115

 assertThat(destination).exists();
}

Figure 4-4. Partial screenshot of the practice web form

Window Size and Position
The Selenium WebDriver API allows manipulating browser size and position very
easily using the Window interface. This type is accessible from a driver object using the
following statement. Table 4-3 shows the available methods in this interface. Then,
Example 4-12 shows a basic test about this feature.

Window window = driver.manage().window();

Table 4-3. Window methods

Method Return Description
getSize() Dimension Get the current window size. It returns the outer window dimension, not just the

viewport (i.e., the visible area of a web page for end users).
setSize(Dimension
 targetSize)

void Change the current window size (again, its outer dimension, and not the
viewport).

getPosition() Point Get current window position (relative to the upper left corner of the screen).

setPosition(Point
 targetPosition)

void Change the current window position (again, relative to the screen’s upper left
corner).

maximize() void Maximize the current window.

116 | Chapter 4: Browser-Agnostic Features

Method Return Description
minimize() void Minimize the current window.

fullscreen() void Fullscreen the current window.

Example 4-12. Test reading and changing the browser size and position

@Test
void testWindow() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 Window window = driver.manage().window();

 Point initialPosition = window.getPosition();
 Dimension initialSize = window.getSize();
 log.debug("Initial window: position {} -- size {}", initialPosition,
 initialSize);

 window.maximize();

 Point maximizedPosition = window.getPosition();
 Dimension maximizedSize = window.getSize();
 log.debug("Maximized window: position {} -- size {}", maximizedPosition,
 maximizedSize);

 assertThat(initialPosition).isNotEqualTo(maximizedPosition);
 assertThat(initialSize).isNotEqualTo(maximizedSize);
}

We read the window position.

We read the window size.

We maximize the browser window.

We verify that the maximized position (and size, in the following line) is different
from the original window.

Browser History
Selenium WebDriver allows manipulating the browser history through the Naviga
tion interface. The following statement illustrates how to access this interface from a
WebDriver object. Using this interface is quite simple. Table 4-4 shows its public
methods, and Example 4-13 shows a basic example. Notice that this test navigates
into different web pages using these methods, and at the end of the test, it verifies the
web page URL is as expected.

Navigation navigation = driver.navigate();

Browser History | 117

Table 4-4. Navigation methods

Method Return Description
back() void Go back in the browser history

forward() void Go forward in the browser history

to(String url)
to(URL url)

void Load a new web page in the current window

refresh() void Refresh the current page

Example 4-13. Test using navigation methods

@Test
void testHistory() {
 String baseUrl = "https://bonigarcia.dev/selenium-webdriver-java/";
 String firstPage = baseUrl + "navigation1.html";
 String secondPage = baseUrl + "navigation2.html";
 String thirdPage = baseUrl + "navigation3.html";

 driver.get(firstPage);

 driver.navigate().to(secondPage);
 driver.navigate().to(thirdPage);
 driver.navigate().back();
 driver.navigate().forward();
 driver.navigate().refresh();

 assertThat(driver.getCurrentUrl()).isEqualTo(thirdPage);
}

The Shadow DOM
As introduced in “The Document Object Model (DOM)” on page 59, the DOM is a
programming interface that allows us to represent and manipulate a web page using a
tree structure. The shadow DOM is a feature of this programming interface that ena‐
bles the creation of scoped subtrees inside the regular DOM tree. The shadow DOM
allows the encapsulation of a group of a DOM subtree (called shadow tree, as repre‐
sented in Figure 4-5) that can specify different CSS styles from the original DOM.
The node in the regular DOM in which the shadow tree is attached is called the
shadow host. The root node of the shadow tree is called the shadow root. As repre‐
sented in Figure 4-5, the shadow tree is flattened into the original DOM in a single
composed tree to be rendered in the browser.

118 | Chapter 4: Browser-Agnostic Features

Figure 4-5. Schematic representation of the shadow DOM

The shadow DOM is part of the standard suite (together with
HTML templates or custom elements) that allows the implementa‐
tion of web components (i.e., reusable custom elements for web
applications).

The shadow DOM allows the creation of self-contained components. In other words,
the shadow tree is isolated from the original DOM. This feature is useful for web
design and composition, but it can be challenging for automated testing with Sele‐
nium WebDriver (since the regular location strategies cannot find web elements
within the shadow tree). Luckily, Selenium WebDriver 4 provides a WebElement
method that allows access to the shadow DOM. Example 4-14 demonstrates this use.

Example 4-14. Test reading the shadow DOM

@Test
void testShadowDom() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/shadow-dom.html");

The Shadow DOM | 119

https://github.com/WICG/webcomponents

 WebElement content = driver.findElement(By.id("content"));
 SearchContext shadowRoot = content.getShadowRoot();
 WebElement textElement = shadowRoot.findElement(By.cssSelector("p"));
 assertThat(textElement.getText()).contains("Hello Shadow DOM");
}

We open the practice web page that contains a shadow tree. You can inspect the
source code of this page to check the JavaScript method used to create a shadow
tree.

We locate the shadow host element.

We get the shadow root from the host element. As a result, we get an instance
of SearchContext, an interface implemented by WebDriver and WebElement, that
allows us to find elements using the methods findElement() and find

Elements().

We find the first paragraph element in the shadow tree.

We verify the text content of the shadow element is as expected.

This feature of the W3C WebDriver specification is recent at the
time of this writing, and therefore might not be implemented in all
drivers (e.g., chromedriver, geckodriver). For instance, it is avail‐
able starting with version 96 of both Chrome and Edge.

Cookies
HTTP 1.x is a stateless protocol, meaning that the server does not track the user state.
In other words, web servers do not remember users across different requests. The
cookies mechanism is an extension to HTTP that allows tracking users by sending
small pieces of text called cookies from server to client. These cookies must be sent
back by clients, and this way, servers remember their clients. Cookies allow you to
maintain web sessions or personalize the user experience on the website, among
other functions.

Web browsers allow managing the browser cookies manually. Selenium WebDriver
enables an equivalent manipulation, but programmatically. The Selenium WebDriver
API provides the methods shown in Table 4-5 to accomplish this. They are accessible
through the manage() function of a WebDriver object.

120 | Chapter 4: Browser-Agnostic Features

Table 4-5. Cookies management methods

Method Return Description
addCookie(Cookie cookie) void Add a new cookie

deleteCookieNamed(String name) void Delete an existing cookie by name

deleteCookie(Cookie cookie) void Delete an existing cookie by instance

deleteAllCookies() void Delete all cookies

getCookies() Set<Cookie> Get all cookies

getCookieNamed(String name) Cookie Get a cookie by name

As this table shows, the Cookie class provides an abstraction to a single cookie in
Java. Table 4-6 summarizes the methods available in this class. In addition, this class
has several constructors, which positionally accept the following parameters:

String name

Cookie name (mandatory)

String value

Cookie value (mandatory)

String domain

Domain in which the cookie is visible (optional)

String path

Path in which the cookie is visible (optional)

Date expiry

Cookie expiration date (optional)

boolean isSecure

Whether the cookie requires a secure connection (optional)

boolean isHttpOnly

Whether this cookie is an HTTP-only cookie, i.e., the cookie is not accessible
through a client-side script (optional)

String sameSite

Whether this cookie is a same-site cookie, i.e., the cookie is restricted to a first-
party or same-site context (optional)

Cookies | 121

Table 4-6. Cookie methods

Method Return Description
getName() String Read cookie name

getValue() String Read cookie value

getDomain() String Read cookie domain

getPath() String Read cookie path

isSecure() boolean Read if cookie requires a secure connection

isHttpOnly() boolean Read if cookie is HTTP-only

getExpiry() Date Read cookie expiry date

getSameSite() String Read cookie same-site context

validate() void Check the different fields of the cookie and throw an IllegalArgument
Exception if it encounters any problem

toJson() Map<String, Object> Map cookie values as a key-value map

The following examples show different tests managing web cookies with the Selenium
WebDriver API. These examples use a practice web page that shows the site cookies
on the GUI (see Figure 4-6):

• Example 4-15 illustrates how to read the existing cookies of a website.
• Example 4-16 shows how to add new cookies.
• Example 4-17 explains how to edit existing cookies.
• Example 4-18 demonstrates how to delete cookies.

Figure 4-6. Practice web page for web cookies

122 | Chapter 4: Browser-Agnostic Features

Example 4-15. Test reading existing cookies

@Test
void testReadCookies() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/cookies.html");

 Options options = driver.manage();
 Set<Cookie> cookies = options.getCookies();
 assertThat(cookies).hasSize(2);

 Cookie username = options.getCookieNamed("username");
 assertThat(username.getValue()).isEqualTo("John Doe");
 assertThat(username.getPath()).isEqualTo("/");

 driver.findElement(By.id("refresh-cookies")).click();
}

We get the Options object used to manage cookies.

We read all the cookies available on this page. It should contain two cookies.

We read the cookie with the name username.

The value of the previous cookie should be John Doe.

The last statement does not affect the test. We invoke this command to check the
cookies in the browser GUI.

Example 4-16. Test adding new cookies

@Test
void testAddCookies() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/cookies.html");

 Options options = driver.manage();
 Cookie newCookie = new Cookie("new-cookie-key", "new-cookie-value");
 options.addCookie(newCookie);
 String readValue = options.getCookieNamed(newCookie.getName())
 .getValue();
 assertThat(newCookie.getValue()).isEqualTo(readValue);

 driver.findElement(By.id("refresh-cookies")).click();
}

We create a new cookie.

Cookies | 123

We add the cookie to the current page.

We read the value of the cookie just added.

We verify this value is as expected.

Example 4-17. Test editing existing cookies

@Test
void testEditCookie() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/cookies.html");

 Options options = driver.manage();
 Cookie username = options.getCookieNamed("username");
 Cookie editedCookie = new Cookie(username.getName(), "new-value");
 options.addCookie(editedCookie);

 Cookie readCookie = options.getCookieNamed(username.getName());
 assertThat(editedCookie).isEqualTo(readCookie);

 driver.findElement(By.id("refresh-cookies")).click();
}

We read an existing cookie.

We create a new cookie reusing the previous cookie name.

We add the new cookie to the web page.

We read the cookie just added.

We verify the cookie has been correctly edited.

Example 4-18. Test deleting existing cookies

@Test
void testDeleteCookies() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/cookies.html");

 Options options = driver.manage();
 Set<Cookie> cookies = options.getCookies();
 Cookie username = options.getCookieNamed("username");
 options.deleteCookie(username);

 assertThat(options.getCookies()).hasSize(cookies.size() - 1);

124 | Chapter 4: Browser-Agnostic Features

 driver.findElement(By.id("refresh-cookies")).click();
}

We read all cookies.

We read the cookie with the name username.

We delete the previous cookie.

We verify the size of the cookies is as expected.

Dropdown Lists
A typical element in web forms is dropdown lists. These fields allow users to select
one or more elements within an option list. The classical HTML tags used to render
these fields are <select> and <options>. As usual, the practice web form contains
one of these elements (see Figure 4-7), defined in HTML as follows:

<select class="form-select" name="my-select">
 <option selected>Open this select menu</option>
 <option value="1">One</option>
 <option value="2">Two</option>
 <option value="3">Three</option>
</select>

Figure 4-7. Select field in the practice web form

Dropdown Lists | 125

These elements are very spread out in web forms. For this reason, Selenium Web‐
Driver provides a helper class called Select to simplify their manipulation. This class
wraps a select WebElement and provides a wide variety of features. Table 4-7 summa‐
rizes the public methods available in the Select class. After that, Example 4-19 shows
a basic test using this class.

Table 4-7. Select methods

Method Return Description
Select(WebElement element) Select Constructor using a WebElement as parameter (it

must be a <select> element); otherwise it
throws an UnexpectedTagNameException

getWrappedElement() WebElement Get wrapped WebElement (i.e., the one used in
the constructor)

isMultiple() boolean Whether the select element supports selecting
multiple options

getOptions() List<WebElement> Read all options that belong to the select element

getAllSelectedOptions() List<WebElement> Read all selected options

getFirstSelectedOption() WebElement Read first selected option

selectByVisibleText(String text) void Select all options that match a given displayed text

selectByIndex(int index) void Select an option by index number

selectByValue(String value) void Select option(s) by value attribute

deselectAll() void Deselect all options

deselectByValue(String value) void Deselect option(s) by value attribute

deselectByIndex(int index) void Deselect by index number

deselectByVisibleText(String text) void Deselect options that match a given displayed text

Example 4-19. Test interacting with a select field

@Test
void test() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");

 Select select = new Select(driver.findElement(By.name("my-select")));
 String optionLabel = "Three";
 select.selectByVisibleText(optionLabel);

 assertThat(select.getFirstSelectedOption().getText())
 .isEqualTo(optionLabel);
}

126 | Chapter 4: Browser-Agnostic Features

We find the select element by name and use the resulting WebElement to instanti‐
ate a Select object.

We select one of the options available in this select, using a by-text strategy.

We verify the selected option text is as expected.

Data List Elements
Another way to implement dropdown lists in HTML is using data lists. Although data
lists are very similar to select elements from a graphical point of view, there is a clear
distinction between them. On the one hand, select fields display an options list, and
users choose one (or several) of the available options. On the other hand, data lists
show a list of suggested options associated with an input form (text) field, and users
are free to select one of those suggested values or type a custom value. The practice
web form contains one of these data lists. You can find its markup in the following
snippet and a screenshot in Figure 4-8.

<input class="form-control" list="my-options" name="my-datalist"
 placeholder="Type to search...">
<datalist id="my-options">
 <option value="San Francisco">
 <option value="New York">
 <option value="Seattle">
 <option value="Los Angeles">
 <option value="Chicago">
</datalist>

Figure 4-8. Data list field in the practice web form

Dropdown Lists | 127

Selenium WebDriver does not provide a custom helper class to manipulate data lists.
Instead, we need to interact with them as standard input texts, with the distinction
that their options are displayed when clicking on the input field. Example 4-20 shows
a test illustrating this.

Example 4-20. Test interacting with a data list field

@Test
void testDatalist() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");

 WebElement datalist = driver.findElement(By.name("my-datalist"));
 datalist.click();

 WebElement option = driver
 .findElement(By.xpath("//datalist/option[2]"));
 String optionValue = option.getAttribute("value");
 datalist.sendKeys(optionValue);

 assertThat(optionValue).isEqualTo("New York");
}

We locate the input field used for the data list.

We click on it to display its options.

We find the second option.

We read the value of the located option.

We type that value in the input field.

We assert the option value is as expected.

Navigation Targets
When navigating web pages using a browser, by default, we use a single page corre‐
sponding to the URL in the navigation bar. Then, we can open another page in a new
browser tab. This second tab can be explicitly opened when a link defines the
attribute target, or the user can force navigation to a new tab, typically by using the
modifier key Ctrl (or Cmd in macOS) together with the mouse click into a web link.
Another possibility is opening web pages in new windows. For this, web pages typi‐
cally use the JavaScript command window.open(url). Another way of displaying dif‐
ferent pages at the same time is using frames and iframes. A frame is an HTML
element type that defines a particular area (into a set called frameset) where a web

128 | Chapter 4: Browser-Agnostic Features

page can be displayed. An iframe is another HTML element that allows embedding
an HTML page into the current one.

Using frames is not encouraged since these elements have many
drawbacks, such as performance and accessibility problems. I
explain how to use them through Selenium WebDriver for compat‐
ibility reasons. Nevertheless, I strongly recommend avoiding
frames on brand-new web applications.

The Selenium WebDriver API provides the interface TargetLocator to deal with the
previously mentioned targets (i.e., tabs, windows, frames, and iframes). This interface
allows changing the focus of the future commands of a WebDriver object (to a new
tab, windows, etc.). This interface is accessible by invoking the method switchTo() in
a WebDriver object. Table 4-8 describes its public methods.

Table 4-8. TargetLocator methods

Method Return Description
frame(int index) WebDriver Change focus to a frame (or iframe) by index number.

frame(String
 nameOrId)

WebDriver Change focus to a frame (or iframe) by name or id.

frame(WebElement
 frameElement)

WebDriver Change focus to a frame (or iframe) previously located as a WebElement.

parentFrame() WebDriver Change focus to the parent context.

window(String
 nameOrHandle)

WebDriver Switch the focus to another window, by name or handle. A window handle is a
hexadecimal string that univocally identifies a window or tab.

newWindow(WindowType
 typeHint)

WebDriver Creates a new browser window (using WindowType.WINDOW) or tab
(WindowType.TAB) and switches the focus to it.

defaultContent() WebDriver Select the main document (when using iframes) or the first frame on the page
(when using a frameset).

activeElement() WebElement Get the element currently selected.

alert() Alert Change focus to a window alert (see “Dialog Boxes” on page 133 for further
details).

Tabs and Windows
Example 4-21 shows a test where we open a new tab for navigating a second web
page. Example 4-22 shows an equivalent case but for opening a new window for the
second web page. Notice that the difference between these examples is only the
parameter WindowType.TAB and WindowType.WINDOW.

Navigation Targets | 129

Example 4-21. Test opening a new tab

@Test
void testNewTab() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 String initHandle = driver.getWindowHandle();

 driver.switchTo().newWindow(WindowType.TAB);
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");
 assertThat(driver.getWindowHandles().size()).isEqualTo(2);

 driver.switchTo().window(initHandle);
 driver.close();
 assertThat(driver.getWindowHandles().size()).isEqualTo(1);
}

We navigate to a web page.

We get the current window handle.

We open a new tab and change the focus to it.

We open another web page (since the focus is in the second tab, the page is
opened in the second tab).

We verify that the number of window handles at this point is 2.

We change the focus to the initial window (using its handle).

We close only the current window. The second tab remains open.

We verify that the number of window handles now is 1.

Example 4-22. Test opening a new window

@Test
void testNewWindow() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 String initHandle = driver.getWindowHandle();

 driver.switchTo().newWindow(WindowType.WINDOW);
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");
 assertThat(driver.getWindowHandles().size()).isEqualTo(2);

 driver.switchTo().window(initHandle);
 driver.close();

130 | Chapter 4: Browser-Agnostic Features

 assertThat(driver.getWindowHandles().size()).isEqualTo(1);
}

This line is different in the examples. In this case, we open a new window
(instead of a tab) and focus on it.

Frames and Iframes
Example 4-23 shows a test in which the web page under test contains an iframe.
Example 4-24 shows the equivalent case but using a frameset.

Example 4-23. Test handling iframes

@Test
void testIFrames() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/iframes.html");

 WebDriverWait wait = new WebDriverWait(driver, Duration.ofSeconds(10));
 wait.until(ExpectedConditions
 .frameToBeAvailableAndSwitchToIt("my-iframe"));

 By pName = By.tagName("p");
 wait.until(ExpectedConditions.numberOfElementsToBeMoreThan(pName, 0));
 List<WebElement> paragraphs = driver.findElements(pName);
 assertThat(paragraphs).hasSize(20);
}

We open a web page that contains an iframe (see Figure 4-9).

We use an explicit wait for waiting for the frame and switching to it.

We use another explicit wait to pause until the paragraphs contained in the
iframe are available.

We assert the number of paragraphs is as expected.

Navigation Targets | 131

Figure 4-9. Practice web page using an iframe

Example 4-24. Test handling frames

@Test
void testFrames() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/frames.html");

 WebDriverWait wait = new WebDriverWait(driver, Duration.ofSeconds(10));
 String frameName = "frame-body";
 wait.until(ExpectedConditions
 .presenceOfElementLocated(By.name(frameName)));
 driver.switchTo().frame(frameName);

 By pName = By.tagName("p");
 wait.until(ExpectedConditions.numberOfElementsToBeMoreThan(pName, 0));
 List<WebElement> paragraphs = driver.findElements(pName);
 assertThat(paragraphs).hasSize(20);
}

We open a web page that contains a frameset (see Figure 4-10).

We wait for the frame to be available. Note that steps 2 and 3 in Example 4-23 are
equivalent to this step.

We change the focus to this frame.

132 | Chapter 4: Browser-Agnostic Features

Figure 4-10. Practice web page using frames

Dialog Boxes
JavaScript provides different dialog boxes (sometimes called pop-ups) to interact with
the user, namely:

Alert
To show a message and wait for the user to press the button OK (only choice in
the dialog). For instance, the following code will open a dialog that displays
“Hello world!” and waits for the user to press the OK button.

alert("Hello world!");

Confirm
To show a dialog box with a question and two buttons: OK and Cancel. For
instance, the following code will open a dialog showing the message “Is this cor‐
rect?” and prompting the user to click on OK or Cancel.

let correct = confirm("Is this correct?");

Prompt
To show a dialog box with a text message, an input text field, and the buttons OK
and Cancel. For example, the following code shows a pop-up displaying “Please
enter your name,” a dialog box in which the user can type, and two buttons (OK
and Cancel).

let username = prompt("Please enter your name");

Dialog Boxes | 133

In addition, CSS allows implementing another type of dialog box called modal win‐
dow. This dialog disables the main window (but keeps it visible) while overlaying a
child pop-up, typically showing a message and some buttons. You can find a sample
page on the practice web page containing all these dialog boxes (alert, confirm,
prompt, and modal). Figure 4-11 shows a screenshot of this page when the modal
dialog is active.

Figure 4-11. Practice web page with dialog boxes (alert, confirm, prompt, and modal)

Alerts, Confirms, and Prompts
The Selenium WebDriver API provides the interface Alert to manipulate JavaScript
dialogs (i.e., alerts, confirms, and prompts). Table 4-9 describes the methods provided
by this interface. Then, Example 4-25 shows a basic test interacting with an alert.

Table 4-9. Alert methods

Method Return Description
accept() void To click OK

getText() String To read the dialog message

dismiss() void To click Cancel (not available in alerts)

sendKeys(String text) void To type some string in the input text (only available in prompts)

134 | Chapter 4: Browser-Agnostic Features

Example 4-25. Test handling an alert dialog

@Test
void testAlert() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/dialog-boxes.html");
 WebDriverWait wait = new WebDriverWait(driver, Duration.ofSeconds(5));

 driver.findElement(By.id("my-alert")).click();
 wait.until(ExpectedConditions.alertIsPresent());
 Alert alert = driver.switchTo().alert();
 assertThat(alert.getText()).isEqualTo("Hello world!");
 alert.accept();
}

We open the practice web page that launches dialog boxes.

We click on the left button to launch a JavaScript alert.

We wait until the alert dialog is displayed on the screen.

We change the focus to the alert pop-up.

We verify that the alert text is as expected.

We click on the OK button of the alert dialog.

We can replace steps 3 and 4 with a single explicit wait statement, as follows (you can
find it in a second test in the same class in the examples repository):

Alert alert = wait.until(ExpectedConditions.alertIsPresent());

The next test (Example 4-26) illustrates how to deal with a confirm dialog. Notice this
example is quite similar to the previous one, but in this case, we can invoke the
method dismiss() to click on the Cancel button available on the confirm dialog.
Finally, Example 4-27 shows how to manage a prompt dialog. In this case, we can
type a string into the input text.

Example 4-26. Test handling a confirm dialog

@Test
void testConfirm() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/dialog-boxes.html");
 WebDriverWait wait = new WebDriverWait(driver, Duration.ofSeconds(5));

 driver.findElement(By.id("my-confirm")).click();
 wait.until(ExpectedConditions.alertIsPresent());
 Alert confirm = driver.switchTo().alert();

Dialog Boxes | 135

 assertThat(confirm.getText()).isEqualTo("Is this correct?");
 confirm.dismiss();
}

Example 4-27. Test handling a prompt dialog

@Test
void testPrompt() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/dialog-boxes.html");
 WebDriverWait wait = new WebDriverWait(driver, Duration.ofSeconds(5));

 driver.findElement(By.id("my-prompt")).click();
 wait.until(ExpectedConditions.alertIsPresent());
 Alert prompt = driver.switchTo().alert();
 prompt.sendKeys("John Doe");
 assertThat(prompt.getText()).isEqualTo("Please enter your name");
 prompt.accept();
}

Modal Windows
Modal windows are dialog boxes built with basic CSS and HTML. For this reason,
Selenium WebDriver does not provide any specific utility for manipulating them.
Instead, we use the standard WebDriver API (locators, waits, etc.) to interact with
modal windows. Example 4-28 shows a basic test using the practice web page that
contains dialog boxes.

Example 4-28. Test handling a modal dialog

@Test
void testModal() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/dialog-boxes.html");
 WebDriverWait wait = new WebDriverWait(driver, Duration.ofSeconds(5));

 driver.findElement(By.id("my-modal")).click();
 WebElement close = driver
 .findElement(By.xpath("//button[text() = 'Close']"));
 assertThat(close.getTagName()).isEqualTo("button");
 wait.until(ExpectedConditions.elementToBeClickable(close));
 close.click();
}

136 | Chapter 4: Browser-Agnostic Features

Web Storage
The Web Storage API allows web applications to store data locally in the client file
system. This API provides two JavaScript objects:

window.localStorage

To store data permanently

window.sessionStorage

To store data during the session time (data is deleted when the browser tab is
closed)

Selenium WebDriver provides the interface WebStorage for manipulating the Web
Storage API. Most of the WebDriver types supported by Selenium WebDriver inherit
this interface: ChromeDriver, EdgeDriver, FirefoxDriver, OperaDriver, and Safari
Driver. This way, we can use this feature of these browsers. Example 4-29 demon‐
strates this use in Chrome. This test uses both types of web storage (local and
session).

Example 4-29. Test using web storage

@Test
void testWebStorage() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-storage.html");
 WebStorage webStorage = (WebStorage) driver;

 LocalStorage localStorage = webStorage.getLocalStorage();
 log.debug("Local storage elements: {}", localStorage.size());

 SessionStorage sessionStorage = webStorage.getSessionStorage();
 sessionStorage.keySet()
 .forEach(key -> log.debug("Session storage: {}={}", key,
 sessionStorage.getItem(key)));
 assertThat(sessionStorage.size()).isEqualTo(2);

 sessionStorage.setItem("new element", "new value");
 assertThat(sessionStorage.size()).isEqualTo(3);

 driver.findElement(By.id("display-session")).click();
}

We cast the driver object to WebStorage.

We log the number of elements of local storage.

We log the session storage (it should contain two elements).

Web Storage | 137

https://html.spec.whatwg.org/multipage/webstorage.html

After adding a new element, there should be three elements in the session
storage.

Event Listeners
The Selenium WebDriver API allows creating listeners that notify events happening
in WebDriver and derived objects. In former versions of Selenium WebDriver, this
feature was accessible through the class EventFiringWebDriver. This class is depre‐
cated as of Selenium WebDriver 4, and instead, we should use the following:

EventFiringDecorator

Wrapper class for WebDriver and derived objects (e.g., WebElement, TargetLoca
tor, etc.). It allows registering one or more listeners (i.e., WebDriverListener
instances).

WebDriverListener

Interface that should implement the listeners registered in the decorator. It sup‐
ports three types of events:

Before events
Logic inserted just before some event starts

After events
Logic inserted just after some event terminates

Error events
Logic inserted before an exception is thrown

To implement an event listener, first, we should create a listener class. In other words,
we need to create a class that implements the WebDriverListener. This interface
defines all its methods using the default keyword, and therefore, it is optional to
override their methods. Thanks to that feature (available as of Java 8), our class
should only implement the method we need. There are plenty of listener methods
available, for instance, afterGet() (executed after calling to the method get() in a
WebDriver instance), or beforeQuit() (executed before calling to the quit() method
in a WebDriver instance), to name a few. My recommendation for checking all these
listeners is to use your favorite IDE to discover the possible methods to be overrid‐
den/implemented. Figure 4-12 shows the wizard for doing this in Eclipse.

138 | Chapter 4: Browser-Agnostic Features

Figure 4-12. WebDriverListener methods in Eclipse

Once we have implemented our listener, we need to create the decorator class. There
are two ways to do that. If we want to decorate a WebDriver object, we can create an
instance of EventFiringDecorator (passing the listener as the argument to the con‐
structor) and then invoke the method decorate() to pass the WebDriver object. For
instance:

WebDriver decoratedDriver = new EventFiringDecorator(myListener)
 .decorate(originalDriver);

The second way is to decorate other objects of the Selenium WebDriver API, namely
WebElement, TargetLocator, Navigation, Options, Timeouts, Window, Alert, or Vir
tualAuthenticator. In this case, we need to invoke the method createDecorated()

Event Listeners | 139

in an EventFiringDecorator object to get a Decorated<T> generic class. The follow‐
ing snippet shows an example using a WebElement as a parameter:

Decorated<WebElement> decoratedWebElement = new EventFiringDecorator(
 listener).createDecorated(myWebElement);

Let’s look at a completed example. First, Example 4-30 shows the class that imple‐
ments the WebDriverListener interface. Notice this class implements two methods:
afterGet() and beforeQuit(). Both methods call takeScreenshot() to take a
browser screenshot. All in all, we are collecting browser screenshots just after loading
a web page (typically at the beginning of the test) and before quitting (typically at the
end of the test). Then, Example 4-31 shows the test that uses this listener.

Example 4-30. Event listener implementing methods afterGet() and beforeQuit()

public class MyEventListener implements WebDriverListener {

 static final Logger log = getLogger(lookup().lookupClass());

 @Override
 public void afterGet(WebDriver driver, String url) {
 WebDriverListener.super.afterGet(driver, url);
 takeScreenshot(driver);
 }

 @Override
 public void beforeQuit(WebDriver driver) {
 takeScreenshot(driver);
 }

 private void takeScreenshot(WebDriver driver) {
 TakesScreenshot ts = (TakesScreenshot) driver;
 File screenshot = ts.getScreenshotAs(OutputType.FILE);
 SessionId sessionId = ((RemoteWebDriver) driver).getSessionId();
 Date today = new Date();
 SimpleDateFormat dateFormat = new SimpleDateFormat(
 "yyyy.MM.dd_HH.mm.ss.SSS");
 String screenshotFileName = String.format("%s-%s.png",
 dateFormat.format(today), sessionId.toString());
 Path destination = Paths.get(screenshotFileName);

 try {
 Files.move(screenshot.toPath(), destination);
 } catch (IOException e) {
 log.error("Exception moving screenshot from {} to {}", screenshot,
 destination, e);
 }
 }

}

140 | Chapter 4: Browser-Agnostic Features

We override this method to execute custom logic after loading web pages with
the WebDriver object.

We override this method to execute custom logic before quitting the WebDriver
object.

We use a unique name for the PNG screenshots. For that, we get the system date
(date and time) plus the session identifier.

Example 4-31. Test using EventFiringDecorator and the previous listener

class EventListenerJupiterTest {

 WebDriver driver;

 @BeforeEach
 void setup() {
 MyEventListener listener = new MyEventListener();
 WebDriver originalDriver = WebDriverManager.chromedriver().create();
 driver = new EventFiringDecorator(listener).decorate(originalDriver);
 }

 @AfterEach
 void teardown() {
 driver.quit();
 }

 @Test
 void testEventListener() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getTitle())
 .isEqualTo("Hands-On Selenium WebDriver with Java");
 driver.findElement(By.linkText("Web form")).click();
 }

}

We create a decorated WebDriver object using an instance on MyEventListener.
We use the resulting driver to control the browser in the @Test logic.

We click on a web link to change the page. The resulting two screenshots taken in
the listener should be different.

Event Listeners | 141

WebDriver Exceptions
All the exceptions provided by the WebDriver API inherit from the class WebDriver
Exception and are unchecked (see the following sidebar if you are unfamiliar with
this terminology). Figure 4-13 shows these exceptions in Selenium WebDriver 4. As
this image shows, there are many different exception types. Table 4-10 summarizes
some of the most common causes.

Figure 4-13. Selenium WebDriver exceptions

142 | Chapter 4: Browser-Agnostic Features

Exceptions in Java
In Java, an exception is an event that disrupts the execution of a program. A class
hierarchy is used to model different exception types in the standard Java API. The
root of this hierarchy is the Throwable class. It has two subtypes:

Error

Irrecoverable problems. As a general rule, applications crash rather than handle
these severe errors. Some examples are OutOfMemoryError or StackOverflow
Error.

Exception

Recoverable problems. Applications can handle these exceptions by using
try-catch blocks. There are two types of Exception classes:

Checked exceptions
Classes that directly inherit the Throwable class (except RuntimeException
and Error). These exceptions are validated at compile time, and therefore we
must handle them with try-catch blocks or rethrow using throws. Exam‐
ples of check exceptions are IOException or MalformedURLException.

Unchecked exceptions
Classes that inherit from the RuntimeException class, which is a subtype of
Exception. These exceptions do not require being handled with try-catch
or rethrowing with throws. Some examples of unchecked exceptions are
NullPointerException or ArrayIndexOutOfBoundException.

Table 4-10. Usual WebDriver exceptions and common causes

Exception Description Common causes
NoSuchElementException Web element not available • Invalid locator strategy

• The element has not been rendered (maybe
you need to wait for it)

NoAlertPresentException Dialog (alert, prompt, or
confirm) not available

Trying to perform an action (e.g., accept()
or dismiss()) into an unavailable dialog

NoSuchWindowException Window or tab not available Trying to switch into an unavailable window or
tab

NoSuchFrameException Frame or iframe not
available

Trying to switch into an unavailable frame or
iframe

InvalidArgumentException Incorrect argument when
calling some method of the
Selenium WebDriver API

• Bad URL in navigation methods
• Nonexistent path when uploading files
• Bad argument type in a JavaScript script

WebDriver Exceptions | 143

Exception Description Common causes
StaleElementReferenceException The element is stale, i.e., it

no longer appears on the
page

The DOM gets updated when trying to interact
with a previously located element

UnreachableBrowserException Problem communicating
with the browser

• The connection with the remote browser
could not be established

• The browser died in the middle of a
WebDriver session

TimeoutException Page loading timeout Some web page takes longer than expected to
load

ScriptTimeoutException Script loading timeout Some script takes longer than expected to
execute

ElementNotVisibleException
ElementNotSelectableException
ElementClickInterceptedException

The element is on the DOM
but is not visible/selectable/
clickable

• Insufficient (or nonexistent) wait until the
element is displayed/selectable/clickable

• The page layout (perhaps caused by
viewport change) makes that element
overlay on the element we try to interact
with

Summary and Outlook
This chapter provided a comprehensive review of those WebDriver API features
interoperable in different web browsers. Among them, you discovered how to execute
JavaScript with Selenium WebDriver, with synchronous, pinned (i.e., attached to a
WebDriver session), and asynchronous scripts. Then, you learned about timeouts,
used to specify a time limit interval for page loading and script execution. Also, you
saw how to manage several browser aspects, such as size and position, navigation his‐
tory, the shadow DOM, and cookies. Next, you discovered how to interact with spe‐
cific web elements, such as dropdown lists (select and data lists), navigation targets
(windows, tabs, frames, and iframes), and dialog boxes (alerts, prompts, confirms,
and modals). Finally, we reviewed the mechanism for implementing web storage and
event listeners in Selenium WebDriver 4 and the most relevant WebDriver exceptions
(and their common causes).

The next chapter continues to expose the features of the Selenium WebDriver API.
The chapter explains those aspects specific to a given browser (e.g., Chrome, Firefox,
etc.), including browser capabilities (e.g., ChromeOptions, FirefoxOptions, etc.), the
Chrome DevTools Protocol (CDP), network interception, mocking geolocation coor‐
dinates, the WebDriver BiDirectional (BiDi) protocol, authentication mechanisms, or
printing web pages to PDF, among other features.

144 | Chapter 4: Browser-Agnostic Features

CHAPTER 5

Browser-Specific Manipulation

As you have seen so far, many features of the Selenium WebDriver API are compati‐
ble across browsers, i.e., we can use Selenium WebDriver to control different types of
browsers programmatically. Other parts of the Selenium WebDriver API are not
interoperable among browsers. In other words, there are some WebDriver character‐
istics available for some browsers (e.g., Chrome or Edge) that are unavailable (or dif‐
ferent) for others (e.g., Firefox). This chapter reviews these browser-specific features.

Browser Capabilities
Selenium WebDriver allows specifying browser-specific aspects by using capabilities.
Examples of capabilities are headless mode, page loading strategies, use of web exten‐
sions, or push notifications management, among many others. As Figure 5-1 shows,
the Selenium WebDriver API provides a set of Java classes to define these capabilities.
The Capabilities interface is at the top of this hierarchy. Internally, the capabilities
interface handles data using key-value pairs that encapsulate specific aspects of a
browser. Then, different Java classes implement this interface to specify capabilities
for web browsers (Chrome, Edge, Firefox, etc.). Table 5-1 summarizes the main
classes of the Capabilities hierarchy and their corresponding target browsers.

145

Figure 5-1. Capabilities hierarchy

Table 5-1. Description of the Capabilities hierarchy

Package Class Browser
org.openqa.selenium MutableCapabilities Generic (cross-browser)

org.openqa.selenium.chrome ChromeOptions Chrome

org.openqa.selenium.edge EdgeOptions Edge

org.openqa.selenium.firefox FirefoxOptions Firefox

org.openqa.selenium.safari SafariOptions Safari

org.openqa.selenium.opera OperaOptions Opera

org.openqa.selenium.ie InternetExplorerOptions Internet Explorer

org.openqa.selenium.remote DesiredCapabilities Remote browsers (see Chapter 6)

The following subsections review the most relevant capabilities for the major web
browsers discussed in this book, i.e., Chrome, Edge, and Firefox. As Chrome and
Edge are both Chromium-based browsers, the capabilities available for both browsers

146 | Chapter 5: Browser-Specific Manipulation

are equivalent. This fact is reflected in Figure 5-1, showing that capability classes
ChromeOptions and EdgeOptions both inherit from the same parent (called
ChromiumOptions).

Headless Browser
Browsers that do not require a GUI to interact with web applications are known as
headless browsers. One of the primary uses of these browsers is end-to-end testing,
i.e., automated interaction with web applications. Current web browsers such as
Chrome, Edge, or Firefox can operate as headless browsers. The Selenium WebDriver
API allows starting these browsers in headless mode using capabilities. To that aim,
first, you need to create an instance of the browser capabilities. In the major brows‐
ers, these objects are instances of ChromeOptions, EdgeOptions, or FirefoxOptions,
respectively. Then, you need to enable the headless mode by invoking the method
setHeadless(true) in the browser capabilities object. Finally, you need to set these
capabilities when creating a WebDriver object.

As “WebDriver Creation” on page 53 explained, we have different ways to create
WebDriver objects. First, we can use a WebDriver constructor (e.g., new Chrome
Driver()). Also, we can use a builder provided by the Selenium WebDriver API (i.e.,
RemoteWebDriver.builder()). Finally, we can use the WebDriverManager builder to
resolve the driver and create the WebDriver instance in a single line of code. The fol‐
lowing examples show these alternatives, used in conjunction with browser capabili‐
ties to enable the headless browser mode, namely:

• Example 5-1 uses Chrome in headless mode. This example creates a WebDriver
instance using the required constructor (ChromeDriver in this case).

• Example 5-2 uses Edge in headless mode. This example creates a WebDriver
instance using the builder available in the Selenium WebDriver API.

• Example 5-3 uses Firefox in headless mode. This example creates a WebDriver
instance using WebDriverManager. Notice that the setup method is not required
in this case since WebDriverManager resolves the driver in the same line as the
WebDriver instantiation.

• Example 5-4 uses Chrome in headless mode through Selenium-Jupiter. This
example uses the parameter resolution mechanism provided by Selenium-Jupiter,
and so we simply declare a ChromeDriver parameter in the test method. Then, we
decorate this parameter using the annotation @Arguments to specify the headless
mode for this browser.

Browser Capabilities | 147

Example 5-1. Test using Chrome in headless mode

class HeadlessChromeJupiterTest {

 WebDriver driver;

 @BeforeAll
 static void setupClass() {
 WebDriverManager.chromedriver().setup();
 }

 @BeforeEach
 void setup() {
 ChromeOptions options = new ChromeOptions();
 options.setHeadless(true);

 driver = new ChromeDriver(options);
 }

 @AfterEach
 void teardown() {
 driver.quit();
 }

 @Test
 void testHeadless() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getTitle()).contains("Selenium WebDriver");
 }

}

We resolve the required driver (chromedriver in this case).

We create the browser capabilities using the ChromeOptions constructor.

We enable the headless mode. This line is equivalent to options.add

Arguments("--headless");.

We set up the browser capabilities by passing the options as a constructor param‐
eter in the ChromeDriver constructor.

Example 5-2. Test using Edge in headless mode

class HeadlessEdgeJupiterTest {

 WebDriver driver;

 @BeforeAll

148 | Chapter 5: Browser-Specific Manipulation

 static void setupClass() {
 WebDriverManager.edgedriver().setup();
 }

 @BeforeEach
 void setup() {
 EdgeOptions options = new EdgeOptions();
 options.setHeadless(true);

 driver = RemoteWebDriver.builder().oneOf(options).build();
 }

 @AfterEach
 void teardown() {
 driver.quit();
 }

 @Test
 void testHeadless() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getTitle()).contains("Selenium WebDriver");
 }

}

As usual, we need to resolve the required driver (msedgedriver in this case).

Since we aim to use Edge, we need to create an EdgeOptions instance to specify
capabilities.

We enable the headless mode. Again, this line is equivalent to options.add
Arguments("--headless");.

We use the WebDriver builder to create the WebDriver object, passing the
options as a parameter.

Example 5-3. Test using Firefox in headless mode

class HeadlessFirefoxJupiterTest {

 WebDriver driver;

 @BeforeEach
 void setup() {
 FirefoxOptions options = new FirefoxOptions();
 options.setHeadless(true);

 driver = WebDriverManager.firefoxdriver().capabilities(options)
 .create();

Browser Capabilities | 149

 }

 @AfterEach
 void teardown() {
 driver.quit();
 }

 @Test
 void testHeadless() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getTitle()).contains("Selenium WebDriver");
 }

}

We use Firefox in this test, and therefore, we create a FirefoxOptions object to
specify capabilities.

In the same way as in the previous examples, we enable the headless mode.

In this example, we use WebDriverManager to resolve the required driver and
create the WebDriver object while specifying the previously created browser
capabilities.

The strategy used to create the WebDriver objects in these examples
is interchangeable. In other words, for example, we can also use the
WebDriverManager builder for each browser in headless mode.

Example 5-4. Test using Chrome in headless mode with Selenium-Jupiter

@ExtendWith(SeleniumJupiter.class)
class HeadlessChromeSelJupTest {

 @Test
 void testHeadless(@Arguments("--headless") ChromeDriver driver) {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getTitle()).contains("Selenium WebDriver");
 }

}

We use the annotation @Arguments to specify the headless mode in the browser
(Chrome in this case).

150 | Chapter 5: Browser-Specific Manipulation

Page Loading Strategies
Selenium WebDriver allows configuring different approaches for loading web pages.
For that, the Selenium WebDriver API provides the PageLoadStrategy enumeration.
Table 5-2 describes the possible values of this enumeration and their purposes. Sele‐
nium WebDriver internally uses the property document.readyState of the DOM API
to check the web page loading state.

Table 5-2. PageLoadStrategy values

Loading strategy Description Readiness state
PageLoadStrategy.NORMAL Default mode. Selenium WebDriver waits until the entire page is loaded

(i.e., the HTML content and subresources, such as stylesheets, images,
JavaScript files, etc.).

"complete"

PageLoadStrategy.EAGER Selenium WebDriver waits until the HTML document has finished
loading and parsing, but subresources (scripts, images, stylesheets,
etc.) are still loading.

"interactive"

PageLoadStrategy.NONE Selenium WebDriver waits only until the HTML document is
downloaded.

"loading"

We need to invoke the method setPageLoadStrategy() of the browser capabilities
(e.g., ChromeOptions, FirefoxOptions, etc.) to set up these strategies (NORMAL, EAGER,
or NONE). Example 5-5 shows a test using Chrome and the NORMAL strategy. In the
examples repository, you can find equivalent examples for Edge and Firefox using the
other strategies (EAGER and NONE). In these examples, in addition to specifying a load‐
ing strategy in the test setup, the test logic calculates the required time to load the
page, displaying this value in the standard output.

Example 5-5. Test using a normal page loading strategy in Chrome

class PageLoadChromeJupiterTest {

 static final Logger log = getLogger(lookup().lookupClass());

 WebDriver driver;

 PageLoadStrategy pageLoadStrategy;

 @BeforeEach
 void setup() {
 ChromeOptions options = new ChromeOptions();
 pageLoadStrategy = PageLoadStrategy.NORMAL;
 options.setPageLoadStrategy(pageLoadStrategy);

 driver = WebDriverManager.chromedriver().capabilities(options).create();
 }

Browser Capabilities | 151

 @AfterEach
 void teardown() {
 driver.quit();
 }

 @Test
 void testPageLoad() {
 long initMillis = System.currentTimeMillis();
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 Duration elapsed = Duration
 .ofMillis(System.currentTimeMillis() - initMillis);

 Capabilities capabilities = ((RemoteWebDriver) driver)
 .getCapabilities();
 Object pageLoad = capabilities
 .getCapability(CapabilityType.PAGE_LOAD_STRATEGY);
 String browserName = capabilities.getBrowserName();
 log.debug(
 "The page took {} ms to be loaded using a '{}' strategy in {}",
 elapsed.toMillis(), pageLoad, browserName);

 assertThat(pageLoad).isEqualTo(pageLoadStrategy.toString());
 }

}

Since we use Chrome in this test, we instantiate ChromeOptions to specify
capabilities.

We set up the page loading strategy to NORMAL.

We use WebDriverManager to resolve the driver, create the WebDriver instance,
and specify the capabilities.

We get the system timestamp before loading the page.

We get the system timestamp after loading the page.

We read the WebDriver object capabilities.

We read the used page loading strategy.

We trace the time required to load the web page.

We verify that the loading strategy is as initially configured.

152 | Chapter 5: Browser-Specific Manipulation

Device Emulation
Major web browsers use development tools (i.e., DevTools in Chromium-based
browsers and Developer Tools in Firefox) to simulate mobile devices in these ways:

Simulating a mobile viewport
To reduce user visible area of a web page using the width and height of a given
mobile device

Throttling the network
To slow the connectivity speed to simulate mobile networks (e.g., 3G)

Throttling the CPU
To slow processing performance

Simulating geolocation
To set custom Global Positioning System (GPS) coordinates

Setting orientation
To rotate the screen

Figure 5-2 shows a screenshot of Chrome using mobile emulation through DevTools.

Figure 5-2. Mobile emulation in Chrome using DevTools

Browser Capabilities | 153

At the time of this writing, this mobile device emulation can be automated through
the Selenium WebDriver API in Chromium-based browsers (Chrome and Edge) but
not Firefox (since it is not implemented in geckodriver). For that, we need to set the
experimental option mobileEmulation in ChromeOptions or EdgeOptions.

Then, there are two alternatives to specify the mobile device to be emulated. First, we
can specify a particular mobile device (e.g., Pixel 2, iPad Pro, or Galaxy Fold, to name
a few). Since this list is updated in each Chromium release, the best way to check the
possibilities is to inspect the available devices in DevTools (e.g., iPhone X is selected
in Figure 5-2). Example 5-6 shows a test setup in which we specify a given mobile
device using the label iPhone 6/7/8.

Example 5-6. Test setup using mobile emulation by specifying a device

@BeforeEach
void setup() {
 ChromeOptions options = new ChromeOptions();
 Map<String, Object> mobileEmulation = new HashMap<>();
 mobileEmulation.put("deviceName", "iPhone 6/7/8");
 options.setExperimentalOption("mobileEmulation", mobileEmulation);

 driver = WebDriverManager.chromedriver().capabilities(options).create();
}

We need to create a HashMap object to specify the mobile emulation options.

Then, we only need to select the device name (iPhone 6/7/8 in this case).

We set up device emulation using experimental options.

As usual, we create a WebDriver object specifying these options.

The second alternative to set up mobile emulation is to specify the individual
attributes of the emulated device. These attributes are:

width

Device screen width (in pixels)

height

Device screen height (in pixels)

pixelRatio

Ratio between physical pixels and logical pixels

touch

Whether to emulate touch events; the default value is true

154 | Chapter 5: Browser-Specific Manipulation

In addition to these attributes, we can specify the user agent of the emulated device.
In HTTP, the user agent is a string specified in request headers that univocally identi‐
fies the type of web browser. It contains the development code name, version, plat‐
form, and other information. Example 5-7 shows a test setup illustrating the use of
this feature.

Example 5-7. Test setup using device emulation by specifying individual attributes

@BeforeEach
void setup() {
 EdgeOptions options = new EdgeOptions();
 Map<String, Object> mobileEmulation = new HashMap<>();
 Map<String, Object> deviceMetrics = new HashMap<>();
 deviceMetrics.put("width", 360);
 deviceMetrics.put("height", 640);
 deviceMetrics.put("pixelRatio", 3.0);
 deviceMetrics.put("touch", true);
 mobileEmulation.put("deviceMetrics", deviceMetrics);
 mobileEmulation.put("userAgent",
 "Mozilla/5.0 (Linux; Android 4.2.1; en-us; Nexus 5 Build/JOP40D) "
 + "AppleWebKit/535.19 (KHTML, like Gecko) "
 + "Chrome/18.0.1025.166 Mobile Safari/535.19");
 options.setExperimentalOption("mobileEmulation", mobileEmulation);

 driver = WebDriverManager.edgedriver().capabilities(options).create();
}

We create a hashmap to store the individual attributes of an emulated mobile,
namely, width, height, pixelRatio, and touch.

We set these attributes by setting the label deviceMetrics in the mobile emula‐
tion map.

We set a custom user agent for a Chrome Mobile 18 in a Nexus 5 device.

Web Extensions
Web extensions (also called add-ons or plug-ins) are programs that can modify or
enhance the default operation of a web browser. Users typically install web extensions
using web stores. These stores are web applications supported by browser maintain‐
ers for hosting public web extensions. Table 5-3 summarizes the web stores for
Chrome, Edge, and Firefox.

Browser Capabilities | 155

Table 5-3. Web stores for the major browsers

Web Store Browser URL
Chrome web store Chrome https://chrome.google.com/webstore/category/extensions

Edge add-ons Edge https://microsoftedge.microsoft.com/addons/Microsoft-Edge-Extensions-Home

Firefox browser add-ons Firefox https://addons.mozilla.org/en-US/firefox

We can install web extensions in a WebDriver session using capabilities. For that, in
Chromium-based browsers, like Chrome and Edge, we use the method addExten
sions() of a ChromeOptions or EdgeOptions object. Example 5-8 shows a test setup
to install a local extension in Chrome.

Example 5-8. Test setup installing a web extension in Chrome

@BeforeEach
void setup() throws URISyntaxException {
 Path extension = Paths
 .get(ClassLoader.getSystemResource("dark-bg.crx").toURI());
 ChromeOptions options = new ChromeOptions();
 options.addExtensions(extension.toFile());

 driver = WebDriverManager.chromedriver().capabilities(options).create();
}

We install a web extension packed as a Chrome Extension (CRX) file. This file is
a test resource (located in the folder src\test\resources of the Java project).
This extension changes the website look and feel to use light text on a dark back‐
ground. Figure 5-3 shows a screenshot of the practice website when loaded by a
WebDriver test using this extension.

We add the extension in the Chrome options, passing the extension as a Java
File.

156 | Chapter 5: Browser-Specific Manipulation

https://chrome.google.com/webstore/category/extensions
https://microsoftedge.microsoft.com/addons/Microsoft-Edge-Extensions-Home
https://addons.mozilla.org/en-US/firefox

Figure 5-3. Practice site when it is loaded using the dark-bg.crx extension

Firefox also allows loading web extensions when it is controlled with WebDriver.
Nevertheless, the syntax is different. Example 5-9 illustrates this.

Example 5-9. Test setup installing a web extension in Firefox

@BeforeEach
void setup() throws URISyntaxException {
 Path extension = Paths
 .get(ClassLoader.getSystemResource("dark-bg.xpi").toURI());
 FirefoxOptions options = new FirefoxOptions();

Browser Capabilities | 157

 FirefoxProfile profile = new FirefoxProfile();
 profile.addExtension(extension.toFile());
 options.setProfile(profile);

 driver = WebDriverManager.firefoxdriver().capabilities(options)
 .create();
}

We use the same extension as in Chrome/Edge, but in this case, the packaging is
specific for Firefox. Notice that the file is different. This time, it is packaged as an
XPInstall file, i.e., a zipped archive containing the web extension source code,
resources (e.g., images), and metadata.

We need to create a custom Firefox profile (i.e., the store where custom settings
are configured).

We add the extension as a Java File to the Firefox profile.

We set the profile in the Firefox options.

Chromium-based browsers (e.g., Chrome, Edge) also allow loading an extension
from its source code (i.e., not packaged as a CRX file). This feature can be very conve‐
nient for automated testing of web extensions during their development.
Example 5-10 shows a test setup that illustrates this feature.

Example 5-10. Test setup installing a web extension from its source code in Edge

@BeforeEach
void setup() throws URISyntaxException {
 Path extension = Paths
 .get(ClassLoader.getSystemResource("web-extension").toURI());
 EdgeOptions options = new EdgeOptions();
 options.addArguments(
 "--load-extension=" + extension.toAbsolutePath().toString());

 driver = WebDriverManager.edgedriver().capabilities(options).create();
}

The extension used in this example is located in the folder web-extension; it is a
test resource folder (stored in src\test\resources of the Java project). This
extension follows the Browser Extensions API. It uses JavaScript to change the
content of first-level headers (h1 tags) with a custom message. Figure 5-4 shows a
screenshot of the practice website when using this extension.

We specify the extension path using the --load-extension argument.

158 | Chapter 5: Browser-Specific Manipulation

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions

Selenium WebDriver creates a new browser profile in each execu‐
tion. For this reason, the installation of web extensions through
Selenium WebDriver is not permanent in the target browsers.

Figure 5-4. Practice site when it is loaded using the local extension

As of Selenium 4.1, Firefox also allows installing web extensions from its source code.
To that aim, FirefoxDriver extends the interface HasExtensions, providing the
method installExtension. Example 5-11 shows a test setup using this feature.

Browser Capabilities | 159

Example 5-11. Test setup installing a web extension from its source code in Firefox

@BeforeEach
void setup() throws URISyntaxException {
 Path extensionFolder = Paths
 .get(ClassLoader.getSystemResource("web-extension").toURI());
 zippedExtension = zipFolder(extensionFolder);

 driver = WebDriverManager.firefoxdriver().create();
 ((FirefoxDriver) driver).installExtension(zippedExtension, true);
}

We use the source code (located in the project classpath) of a web extension.

The method installExtension requires that the extension installed from its
source code is zipped. WebDriverManager provides the static helper method
called zipFolder(Path) to ease this process.

We install the zipped extension as a temporal add-on in Firefox.

Geolocation
The Geolocation API is a W3C specification that allows access to the geographical
location information associated with the hosting device (e.g., laptop or mobile) of the
web browser. Usual geolocation data sources include GPS data and the location infer‐
red from the network, such as the IP address. The Geolocation API is available in a
web browser calling the JavaScript object navigator.geolocation. When using this
statement, and for privacy reasons, a pop-up prompts the user for permission to
report location data.

The practice site contains a web page using geolocation. Figure 5-5 shows a screen‐
shot of this page. This figure shows the permission pop-up shown to the user when
clicking the button “Get coordinates.” To handle this dialog using the Selenium Web‐
Driver API, we use capabilities. Like other occasions, the required capabilities to
grant access to the geolocation data are different in Chrome/Edge than in Firefox.
The following code snippets show the difference. First, Example 5-12 shows a test
setup where geolocation access is granted in Chrome. The same experimental prefer‐
ence (profile.default_content_setting_values.geolocation) would be used in
Edge (as usual, you can find the complete test in the examples repository). Then,
Example 5-13 shows the equivalent test setup, but using Firefox.

160 | Chapter 5: Browser-Specific Manipulation

https://www.w3.org/TR/geolocation

Figure 5-5. Practice site showing the geolocation permission pop-up

Example 5-12. Test setup to allow geolocation in Chrome

@BeforeEach
void setup() {
 ChromeOptions options = new ChromeOptions();
 Map<String, Object> prefs = new HashMap<>();
 prefs.put("profile.default_content_setting_values.geolocation", 1);
 options.setExperimentalOption("prefs", prefs);

 driver = WebDriverManager.chromedriver().capabilities(options).create();
}

We create a hashmap for experimental options.

We set to 1 the experimental option profile.default_content_setting_
values.geolocation to allow accessing the geolocation position. The other
possible values are: 0 for the default behavior and 2 for blocking access to the
geolocation data.

We set the experimental options using the label prefs in the Chrome options.

Suppose you need to access the geolocation coordinates using
Chrome or Edge in a macOS machine. In that case, you will also
need to enable the location services for these browsers in the
macOS preferences (System Preferences → Security & Privacy →
Location Services). Figure 5-6 shows this configuration.

Browser Capabilities | 161

Figure 5-6. Enabling location services for Chrome and Edge in macOS

Example 5-13. Test setup to allow geolocation in Firefox

@BeforeEach
void setup() {
 FirefoxOptions options = new FirefoxOptions();
 options.addPreference("geo.enabled", true);
 options.addPreference("geo.prompt.testing", true);
 options.addPreference("geo.provider.use_corelocation", true);

 driver = WebDriverManager.firefoxdriver().capabilities(options)
 .create();
}

To enable the Geolocation API

To grant access to the geolocation data (i.e., click on allow in the access pop-up)

To gather data using all the available components in the device, such as GPS,
WiFi, or Bluetooth

Notifications
The Notifications API is a standard web API that allows websites to send notifications
displayed at the operating system desktop. This API is available through the Java‐
Script object Notification. Before a website can send notifications, the user must
grant permission. This consent is prompted to the user in a dialog pop-up similar to

162 | Chapter 5: Browser-Specific Manipulation

https://notifications.spec.whatwg.org

geolocation data. The practice site contains a web page using the Notification API.
Figure 5-7 shows a screenshot of the notification permission pop-up for this page.
Figure 5-8 shows the message sent by this web page on a Linux host.

Figure 5-7. Practice site showing the notification permission pop-up

Figure 5-8. Practice site showing a notification in a Linux desktop

Browser Capabilities | 163

The Selenium WebDriver API allows granting notifications by using capabilities.
Like in other features, the syntax of these capabilities is different in Chrome/Edge and
Firefox. Example 5-14 shows the test setup to enable notifications as Chrome
options. We use the same preference (profile.default_content_setting_val
ues.notifications) to allow notifications in Edge. Example 5-15 shows the equiva‐
lent test setup for Firefox. The preference label (permissions.default.desktop-
notification) is different in this case, although its value (1) is the same for allowing
notifications. The other possible value is 2, which is used to block notifications (both
in Chrome/Edge and Firefox).

Example 5-14. Test setup to allow notifications in Chrome

@BeforeEach
void setup() {
 ChromeOptions options = new ChromeOptions();
 Map<String, Object> prefs = new HashMap<>();
 prefs.put("profile.default_content_setting_values.notifications", 1);
 options.setExperimentalOption("prefs", prefs);

 driver = WebDriverManager.chromedriver().capabilities(options).create();
}

Example 5-15. Test setup to allow notifications in Firefox

@BeforeEach
void setup() {
 FirefoxOptions options = new FirefoxOptions();
 options.addPreference("permissions.default.desktop-notification", 1);

 driver = WebDriverManager.firefoxdriver().capabilities(options)
 .create();
}

Example 5-16 shows the test logic used with the previous setup. As usual, you can
find the complete test case in the examples repository. This test is an example of asyn‐
chronous script execution. This script overrides the original Notification JavaScript
object. The new implementation of this object gets the title of the notification mes‐
sage, which is returned in the script callback to the WebDriver test.

Example 5-16. Test handling notifications

@Test
void testNotifications() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/notifications.html");
 JavascriptExecutor js = (JavascriptExecutor) driver;

164 | Chapter 5: Browser-Specific Manipulation

 String script = String.join("\n",
 "const callback = arguments[arguments.length - 1];",
 "const OldNotify = window.Notification;",
 "function newNotification(title, options) {",
 " callback(title);",
 " return new OldNotify(title, options);",
 "}",
 "newNotification.requestPermission = " +
 "OldNotify.requestPermission.bind(OldNotify);",
 "Object.defineProperty(newNotification, 'permission', {",
 " get: function() {",
 " return OldNotify.permission;",
 " }",
 "});",
 "window.Notification = newNotification;",
 "document.getElementById('notify-me').click();");
 log.debug("Executing the following script asynchronously:\n{}", script);

 Object notificationTitle = js.executeAsyncScript(script);
 assertThat(notificationTitle).isEqualTo("This is a notification");
}

As usual in asynchronous script execution, the last argument is the callback func‐
tion used to signal the script termination.

We store a copy of the original Notification constructor.

We create a new constructor for notifications.

We pass the message title as an argument in the callback. As a result, the title is
returned to the WebDriver call (Java in this case).

We use the old constructor to create an original Notification object.

We click on the button that triggers the notification on the web page.

We get the returned object after the script execution.

We verify the notification title is as expected.

Browser Binary
Selenium WebDriver detects the path of controlled web browsers (Chrome, Firefox,
etc.) out of the box. Nevertheless, we can specify a custom path for the browser exe‐
cutable file using capabilities. This feature can be helpful when the installation path of
the browser is not standard (for instance, in the case of beta/development/canary
browsers).

Browser Capabilities | 165

We use the same capabilities syntax to specify the binary path for Chrome, Edge, and
Firefox. Example 5-17 shows a test setup using Chrome beta.

Example 5-17. Test setup setting a custom binary path for Chrome

@BeforeEach
void setup() {
 Path browserBinary = Paths.get("/usr/bin/google-chrome-beta");
 assumeThat(browserBinary).exists();

 ChromeOptions options = new ChromeOptions();
 options.setBinary(browserBinary.toFile());
 driver = WebDriverManager.chromedriver().capabilities(options).create();
}

We use a Java Path to get the browser binary path (in this case, Chrome beta in
Linux).

We use assumptions to conditionally skip this test when the previous path does
not exist (e.g., in the CI server).

We use the method setBinary of the Chrome options to set the binary path (as a
Java File).

Web Proxies
In computer networking, a proxy is a server that acts as an intermediary between a
client and a server. A web proxy is a proxy between a browser and a web server, and it
can serve multiple purposes, such as:

Access region-specific information
The proxy is typically located in a different region than the client, and the server
consequently replies to that region.

Avoiding restrictions
A proxy can help access blocked websites, for example, by an intermediate
firewall.

Capture network traffic
A proxy can gather HTTP requests and responses.

Caching
A proxy can allow faster website retrieval.

Figure 5-9 represents the location of a web proxy in the Selenium WebDriver archi‐
tecture compared to the typical scenario in which a web proxy is not used. As you can
see, the web proxy is placed in the middle of the browser and the web application

166 | Chapter 5: Browser-Specific Manipulation

under test, and it works at the HTTP level. This way, the web proxy allows imple‐
menting the previously mentioned purposes (e.g., capturing HTTP network traffic)
in Selenium WebDriver tests.

Figure 5-9. Selenium WebDriver architecture with and without a web proxy

The Selenium WebDriver API provides a Proxy class to configure a web proxy. This
class is configured into a WebDriver object using capabilities. Example 5-18 illustrates
how.

Example 5-18. Test setup to configure a web proxy

@BeforeEach
void setup() {
 Proxy proxy = new Proxy();
 String proxyStr = "proxy:port";
 proxy.setHttpProxy(proxyStr);
 proxy.setSslProxy(proxyStr);

 ChromeOptions options = new ChromeOptions();
 options.setAcceptInsecureCerts(true);
 options.setProxy(proxy);

 driver = WebDriverManager.chromedriver().capabilities(options).create();
}

We create an instance of the class Proxy.

The syntax required to specify a proxy is host:port.

Browser Capabilities | 167

We specify the proxy is used for HTTP connections.

We also specify the proxy is used for HTTPS connections.

Although not mandatory, it is typically required to accept insecure certificates.

We set the proxy as a capability. This line is equivalent to options.setCapabil
ity(CapabilityType.PROXY, proxy);.

“Capture Network Traffic” on page 296 shows how to use a third-
party library to capture network traffic by using a web proxy in a
Selenium WebDriver test.

Log Gathering
The Selenium WebDriver API allows gathering different log sources. This feature is
enabled using capabilities, although it is supported only in Chromium-based brows‐
ers at the time of this writing. Example 5-19 presents a test setup that enables gather‐
ing browser logs (i.e., console messages). This snippet also contains the test logic, in
which we need to invoke driver.manage().logs() to gather the log list.

Example 5-19. Test gathering browser log using Chrome

@BeforeEach
void setup() {
 LoggingPreferences logs = new LoggingPreferences();
 logs.enable(LogType.BROWSER, Level.ALL);

 ChromeOptions options = new ChromeOptions();
 options.setCapability(CapabilityType.LOGGING_PREFS, logs);

 driver = WebDriverManager.chromedriver().capabilities(options).create();
}

@Test
void testBrowserLogs() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/console-logs.html");

 LogEntries browserLogs = driver.manage().logs().get(LogType.BROWSER);
 Assertions.assertThat(browserLogs.getAll()).isNotEmpty();
 browserLogs.forEach(l -> log.debug("{}", l));
}

We enable gathering all levels of browser logs.

168 | Chapter 5: Browser-Specific Manipulation

We set the loggingPrefs capability.

We open a practice page that logs several traces in the browser console.

We gather all the logs and filter them by browser (console traces).

We verify the number of traces is not zero.

We display each log in the standard output.

Log gathering is not available in the W3C WebDriver specification
at the time of writing. Nevertheless, it has been implemented in
some drivers such as chromedriver or msedgedriver (i.e., Chrome
and Edge), but it is unavailable in others, such as geckodriver (i.e.,
Firefox).

Get User Media
WebRTC is a set of standard technologies that allow exchanging real-time media
using web browsers. This technology allows the creation of audio- and video confer‐
encing web applications using JavaScript APIs on the client side. The practice site
contains a web page that gets user media (microphone and webcam) using the
getUserMedia JavaScript API. Like in other APIs, and for the sake of security and pri‐
vacy, a browser pop-up asks for permission before accessing the user media.
Figure 5-10 shows the sample web page when prompting this dialog.

Figure 5-10. Practice site prompting the user media permission pop-up

Browser Capabilities | 169

https://webrtc.org

We use capabilities to grant access to the user media in the Selenium WebDriver API.
The syntax of these capabilities is the same in Chrome and Edge (see Example 5-20)
but different in Firefox (see Example 5-21).

Example 5-20. Test setup granting synthetic user media in Chrome

@BeforeEach
void setup() {
 ChromeOptions options = new ChromeOptions();
 options.addArguments("--use-fake-ui-for-media-stream");
 options.addArguments("--use-fake-device-for-media-stream");

 driver = WebDriverManager.chromedriver().capabilities(options).create();
}

Argument to allow accessing user media (audio and video).

Argument to fake user media using a synthetic video (green spinner) and audio
(a beep per second). You can see this video in Figure 5-11.

Figure 5-11. Practice site using synthetic user media in Chrome

170 | Chapter 5: Browser-Specific Manipulation

Example 5-21. Test setup granting synthetic user media in Firefox

@BeforeEach
void setup() {
 FirefoxOptions options = new FirefoxOptions();
 options.addPreference("media.navigator.permission.disabled", true);
 options.addPreference("media.navigator.streams.fake", true);

 driver = WebDriverManager.firefoxdriver().capabilities(options)
 .create();
}

Preference to access the user media.

Preference to fake the user media using a synthetic video (with changing color
background) and audio (constant beep). You can see this video in Figure 5-12.

Figure 5-12. Practice site using synthetic user media in Firefox

Loading Insecure Pages
When web browsers try to load a web page using HTTPS (Hypertext Transfer Proto‐
col Secure) but the certificate on the server side is invalid, the browser warns the user

Browser Capabilities | 171

about it. Examples of invalid certificates are self-signed, revoked, or cryptographically
unsafe certificates. Figure 5-13 shows a screenshot of this warning in Chrome.

Figure 5-13. Web page using an insecure certificate

This issue does not necessarily imply a security concern. It might happen during the
development of a website, for example, when using a self-signed certificate. For this
reason, the Selenium WebDriver API allows disabling the certificate checks using the
acceptInsecureCerts capability. This capability is the same in Chrome, Edge, and
Firefox. Example 5-22 shows a test setup in which this capability is enabled using
Chrome. This snippet also contains a test opening an insecure website.

Example 5-22. Test of a web application that uses an insecure certificate

@BeforeEach
void setup() {
 ChromeOptions options = new ChromeOptions();
 options.setAcceptInsecureCerts(true);

 driver = WebDriverManager.chromedriver().capabilities(options).create();
}

@Test
void testInsecure() {
 driver.get("https://self-signed.badssl.com/");

 String bgColor = driver.findElement(By.tagName("body"))
 .getCssValue("background-color");
 Color red = new Color(255, 0, 0, 1);
 assertThat(Color.fromString(bgColor)).isEqualTo(red);
}

172 | Chapter 5: Browser-Specific Manipulation

We enable the capability to allow insecure certificates.

We open a website using an insecure certificate (self-signed in this case).

If the website is loaded, the body background should be red.

Localization
In software engineering, localization refers to the process of adapting an application
to meet the culture and the language (called locale) of its end users. Localization is
sometimes written as l10n (10 is the number of letters between l and n in the English
word localization). The most usual localization activity is translating the text dis‐
played in an application UI to different languages. In addition, other UI aspects can
be adjusted depending on the locale, such as the currencies (euros, dollars, etc.), sys‐
tems of measurement (e.g., metric or imperial systems), or number and date format.

L10n is part of a broader concept called internationalization (i18n), which is the pro‐
cess of designing and developing an application that enables easy l10n for heteroge‐
neous target audiences. Common practices to enable i18n are using Unicode for text
encoding or adding CSS support for vertical text or non-Latin typographies.

Localization testing is a form of nonfunctional testing where a SUT is verified for spe‐
cific locale settings. The Selenium WebDriver API allows us to make localization test‐
ing based on the browser language by setting the capability intl.accept_languages.
This capability allows you to specify the locale identifier, such as en_US for American
English or es_ES for European Spanish, to name a few. Example 5-23 shows a test
setup that configures this capability in Chrome. We can use the same syntax in Edge,
although we specify this capability as a preference in Firefox (see Example 5-24).

Example 5-23. Test that uses a preferred locale for Chrome

String lang;

@BeforeEach
void setup() {
 lang = "es-ES";
 ChromeOptions options = new ChromeOptions();
 Map<String, Object> prefs = new HashMap<>();
 prefs.put("intl.accept_languages", lang);
 options.setExperimentalOption("prefs", prefs);

 driver = WebDriverManager.chromedriver().capabilities(options).create();
}

@Test
void testAcceptLang() {
 driver.get(

Browser Capabilities | 173

 "https://bonigarcia.dev/selenium-webdriver-java/multilanguage.html");

 ResourceBundle strings = ResourceBundle.getBundle("strings",
 Locale.forLanguageTag(lang));
 String home = strings.getString("home");
 String content = strings.getString("content");
 String about = strings.getString("about");
 String contact = strings.getString("contact");

 String bodyText = driver.findElement(By.tagName("body")).getText();
 assertThat(bodyText).contains(home).contains(content).contains(about)
 .contains(contact);
}

We specify European Spanish as the preferred language in Chrome.

We open a practice page that supports multilanguage (English and Spanish).

We read the text translations using a resource bundle. You can find these strings
in the file strings_es.properties (and strings_en.properties) in the project
folder src/test/resources.

We assert that the document body contains all the expected strings.

Example 5-24. Test setup that specifies a preferred locale for Firefox

@BeforeEach
void setup() {
 lang = "es-ES";
 FirefoxOptions options = new FirefoxOptions();
 options.addPreference("intl.accept_languages", lang);

 driver = WebDriverManager.firefoxdriver().capabilities(options)
 .create();
}

There is a second alternative to practice localization testing with Selenium Web‐
Driver. Instead of changing the preferred language (which determines the HTTP
header accept-language), we can change the default language of the web browser. If
that HTTP header is not present, multilanguage applications will use the browser lan‐
guage alternatively. The Selenium WebDriver API allows changing the browser
language with a simple argument called --lang, specified as browser capability. This
argument is interoperable in Chrome, Edge, and Firefox. Example 5-25 shows how to
set the browser language to American English using WebDriver capabilities.

174 | Chapter 5: Browser-Specific Manipulation

Example 5-25. Test setup that changes the browser language in Chrome

@BeforeEach
void setup() {
 lang = "en-US";
 ChromeOptions options = new ChromeOptions();
 options.addArguments("--lang=" + lang);

 driver = WebDriverManager.chromedriver().capabilities(options).create();
}

Incognito
Incognito mode ensures that browsers run in a clean state. This mode allows private
browsing, i.e., running isolated from the main session and user data. The Selenium
WebDriver API enables the execution of browsers in incognito mode using capabili‐
ties. For Chrome and Edge, this mode is activated using the --incognito argument
(see Example 5-26), while in Firefox, we use the -private preference (see
Example 5-27).

Example 5-26. Test setup for using Chrome in incognito mode

@BeforeEach
void setup() {
 ChromeOptions options = new ChromeOptions();
 options.addArguments("--incognito");

 driver = WebDriverManager.chromedriver().capabilities(options).create();
}

Example 5-27. Test setup for using Firefox in incognito mode

@BeforeEach
void setup() {
 FirefoxOptions options = new FirefoxOptions();
 options.addArguments("-private");

 driver = WebDriverManager.firefoxdriver().capabilities(options)
 .create();
}

Edge in Internet Explorer Mode
Edge offers built-in support for the Microsoft legacy browser, i.e., Internet Explorer
(IE). This way, to create a Selenium WebDriver test that uses Edge in IE mode, we
need first to enable the IE mode in Edge. As shown in Figure 5-14, this option is
enabled in Edge settings → Default browser → Allow sites to be reloaded in Internet

Browser Capabilities | 175

Explorer mode. Then, we can use the Selenium WebDriver API as illustrated in
Example 5-28.

Figure 5-14. Browser setup to enable Edge in IE mode

Example 5-28. Test setup to use Edge in IE mode

@BeforeAll
static void setupClass() {
 assumeThat(IS_OS_WINDOWS).isTrue();
 WebDriverManager.iedriver().setup();
}

@BeforeEach
void setup() {
 Optional<Path> browserPath = WebDriverManager.edgedriver()
 .getBrowserPath();
 assumeThat(browserPath).isPresent();

 InternetExplorerOptions options = new InternetExplorerOptions();
 options.attachToEdgeChrome();
 options.withEdgeExecutablePath(browserPath.get().toString());

 driver = new InternetExplorerDriver(options);
}

We assume that the test is executed in Windows since IE mode is not supported
on other operating systems.

176 | Chapter 5: Browser-Specific Manipulation

We use WebDriverManager to manage IEDriver (the driver required by Internet
Explorer).

We use WebDriverManager to discover the path of Edge.

We use IE options to specify that we use Edge in IE mode.

We set the previously discovered Edge path on the IE options.

We create the driver instance to use Internet Explorer (which will actually be
Edge in IE mode).

The Chrome DevTools Protocol
Chrome DevTools is a set of web developer tools for Chromium-based web browsers,
such as Chrome and Edge. These tools allow inspecting, debugging, or profiling these
browsers, among other functions. The Chrome DevTools Protocol (CDP) is a com‐
munication protocol that allows the manipulation of the Chrome DevTools by exter‐
nal clients. Firefox implements a subset of the CDP to support automation tools like
Selenium WebDriver.

There are two ways to use CDP in Selenium WebDriver. As of version 4, Selenium
WebDriver provides the interface HasDevTools for sending CDP commands to the
browser. This interface is implemented by ChromiumDriver (used for Chrome and
Edge) and FirefoxDriver (for Firefox). This mechanism is quite powerful since it
provides direct access to the CDP with Selenium WebDriver. Nevertheless, it has a
relevant limitation since it is tied to both the browser type and version.

For this reason, the Selenium WebDriver API provides a second way to use the CDP,
based on a set of wrapper classes built on top of CDP for advanced manipulation of
the browsers. These wrappers allow different operations, such as network traffic
interception or basic and digest authentication. The following subsection explains
these wrappers. After that, I present several examples for using the CDP commands
directly.

CDP Selenium Wrappers
The Selenium WebDriver API contains a group of helper classes that wraps some of
the CDP commands. These classes aim to provide a friendly API enabling advanced
features for Selenium WebDriver tests.

The Chrome DevTools Protocol | 177

https://developer.chrome.com/docs/devtools
https://chromedevtools.github.io/devtools-protocol

Network interceptor

The first wrapper class built on top of CDP is called NetworkInterceptor. This class
allows stubbing the backend requests, intercepting network traffic, and returning pre-
canned responses. This feature might help to simplify complex end-to-end tests by
mocking external calls with fast, straightforward responses. To instantiate Network
Interceptor, we need to specify parameters in its constructor (see Example 5-29):

• A WebDriver object that implements the CDP (i.e., ChromeDriver or EdgeDriver)
• A Route object to map the network requests to responses

Example 5-29. Test intercepting network traffic using NetworkInterceptor

@Test
void testNetworkInterceptor() throws Exception {
 Path img = Paths
 .get(ClassLoader.getSystemResource("tools.png").toURI());
 byte[] bytes = Files.readAllBytes(img);

 try (NetworkInterceptor interceptor = new NetworkInterceptor(driver,
 Route.matching(req -> req.getUri().endsWith(".png"))
 .to(() -> req -> new HttpResponse()
 .setContent(Contents.bytes(bytes))))) {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");

 int width = Integer.parseInt(driver.findElement(By.tagName("img"))
 .getAttribute("width"));
 assertThat(width).isGreaterThan(80);
 }
}

We load a local image stored as a test resource in the Java project.

We create a network interceptor instance, creating a route for all the requests
ending in .png, and stubbing this request with a new response, in this case send‐
ing the content of the previous picture.

We open the practice site.

If the interception works as expected, the image on the page should have a width
higher than the original logo.

178 | Chapter 5: Browser-Specific Manipulation

A DevToolsException will be thrown if a browser different than
Chrome or Edge (such as Firefox) is used with previous code.

Basic and digest authentication
HTTP provides two built-in mechanisms for recognizing a user’s identity, called basic
and digest authentication. Both methods allow specifying the user’s credential using a
pair of values: username and password. The difference between them is how they
communicate the credentials. On the one hand, the digest authentication method
sends encrypted credentials by applying a hash function to username and password.
On the other hand, basic authentication uses Base64 to encode (not encrypt) the
credentials.

Selenium WebDriver provides the interface HasAuthentication to seamlessly imple‐
ment basic and digest authentication. Example 5-30 shows a test using Chrome and
basic authentication. You can use the exact mechanism with Edge and digest authen‐
tication (see the complete test in the example repository).

Example 5-30. Test using basic authentication with Chrome

@Test
void testBasicAuth() {
 ((HasAuthentication) driver)
 .register(() -> new UsernameAndPassword("guest", "guest"));

 driver.get("https://jigsaw.w3.org/HTTP/Basic/");

 WebElement body = driver.findElement(By.tagName("body"));
 assertThat(body.getText()).contains("Your browser made it!");
}

We cast the driver object to HasAuthentication and register the credentials
(username and password).

We open a website protected with basic authentication.

We verify the page content is available.

When using other browsers (such as Firefox), we cannot cast the driver object to
HasAuthentication. Nevertheless, there is a general way to send the credentials in
the URL using the syntax protocol://username:password@domain. Example 5-31
demonstrates this use.

The Chrome DevTools Protocol | 179

https://github.com/bonigarcia/selenium-webdriver-java

Example 5-31. Test using basic authentication and Firefox

@Test
void testGenericAuth() {
 driver.get("https://guest:guest@jigsaw.w3.org/HTTP/Basic/");

 WebElement body = driver.findElement(By.tagName("body"));
 assertThat(body.getText()).contains("Your browser made it!");
}

CDP Raw Commands
As of version 4, Selenium WebDriver provides the interface HasDevTools for using
the CDP directly. This interface is implemented by ChromiumDriver (used for
Chrome and Edge) and FirefoxDriver (for Firefox). To use this feature, we first need
to open a CDP session (i.e., a WebSocket connection between the client and the
browser) using the method createSession() of a DevTools instance. Example 5-32
shows the recommended structure for using CDP in Selenium WebDriver tests. As
you can see, the CDP session is created in the test setup and closed in the teardown.
Each test will use the class attribute devTools to interact with the Chrome DevTools.

Example 5-32. Test structure to use Chrome DevTools

WebDriver driver;

DevTools devTools;

@BeforeEach
void setup() {
 driver = WebDriverManager.chromedriver().create();
 devTools = ((ChromeDriver) driver).getDevTools();
 devTools.createSession();
}

@AfterEach
void teardown() {
 devTools.close();
 driver.quit();
}

We declare a DevTools class attribute.

We get the DevTools instance from the driver object. In this example (and the
rest), I use ChromeDriver (although EdgeDriver instances would also be valid).

We create a CDP session to interact with Chrome DevTools in the test logic.

180 | Chapter 5: Browser-Specific Manipulation

After each test and before quitting the WebDriver session, we terminate the CDP
session.

The following subsections present several examples that illustrate the potential of
DevTools in WebDriver tests. In these examples, we use an instance of DevTools for
sending CDP commands using the method send(). The Selenium WebDriver API
provides various commands that allow different operations for testing web applica‐
tions, such as emulating network conditions, handling HTTP headers, blocking
URLs, etc.

The Selenium WebDriver tests using the raw CDP commands
(as explained in the following subsections) are tied to a given
browser version. You can see this version by inspecting the import
clauses (e.g., import org.openqa.selenium.devtools.v96.*;) in
the complete tests available in the examples repository.

Emulate network conditions
The CDP allows the emulation of different networks (such as mobile 2G/3G/4G,
WiFi, or Bluetooth, among others) and conditions (e.g., latency or throughput). This
feature can be helpful to test the behavior of web applications under specific connec‐
tivity parameters. Example 5-33 shows a test using this feature. As you can see, this
test sends two CDP commands:

Network.enable()

To activate network tracking. This command has three optional arguments:

Optional<Integer> maxTotalBufferSize

Maximum buffer size (in bytes) for network payloads.

Optional<Integer> maxResourceBufferSize

Maximum buffer size (in bytes) for single resources.

Optional<Integer> maxPostDataSize

Longest post body size (in bytes).

Network.emulateNetworkConditions()

To activate network emulation. The emulated conditions are specified using the
following parameters:

Boolean offline

To emulate no connection to the internet. Number latency: Minimum
latency (in ms) from request to response.

The Chrome DevTools Protocol | 181

Number downloadThroughput

Maximal download throughput (in bytes/sec). -1 disables download
throttling.

Number uploadThroughput

Maximal upload throughput (in bytes/sec). -1 disables upload throttling.

Optional<ConnectionType> connectionType

Emulated connection technology. The enumeration ConnectionType accepts
the following options: NONE, CELLULAR2G, CELLULAR3G, CELLULAR4G, BLUE
TOOTH, ETHERNET, WIFI, WIMAX, and OTHER.

Example 5-33. Test emulating network conditions

@Test
void testEmulateNetworkConditions() {
 devTools.send(Network.enable(Optional.empty(), Optional.empty(),
 Optional.empty()));
 devTools.send(Network.emulateNetworkConditions(false, 100, 50 * 1024,
 50 * 1024, Optional.of(ConnectionType.CELLULAR3G)));

 long initMillis = System.currentTimeMillis();
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 Duration elapsed = Duration
 .ofMillis(System.currentTimeMillis() - initMillis);
 log.debug("The page took {} ms to be loaded", elapsed.toMillis());

 assertThat(driver.getTitle()).contains("Selenium WebDriver");
}

We activate network tracking (without tuning any network parameter).

We emulate a mobile 3G network with 50 KBps as download and upload
bandwidth.

We get a system timestamp before loading a web page.

We load the index page of the practice site.

We calculate the required time to load this page.

Network monitoring
We can also use the CDP to monitor network traffic when interacting with web
pages. Example 5-34 shows a test using this feature. This test uses the method add
Listener() of a DevTools object to trace HTTP requests and responses.

182 | Chapter 5: Browser-Specific Manipulation

Example 5-34. Test monitoring HTTP requests and responses

@Test
void testNetworkMonitoring() {
 devTools.send(Network.enable(Optional.empty(), Optional.empty(),
 Optional.empty()));

 devTools.addListener(Network.requestWillBeSent(), request -> {
 log.debug("Request {}", request.getRequestId());
 log.debug("\t Method: {}", request.getRequest().getMethod());
 log.debug("\t URL: {}", request.getRequest().getUrl());
 logHeaders(request.getRequest().getHeaders());
 });

 devTools.addListener(Network.responseReceived(), response -> {
 log.debug("Response {}", response.getRequestId());
 log.debug("\t URL: {}", response.getResponse().getUrl());
 log.debug("\t Status: {}", response.getResponse().getStatus());
 logHeaders(response.getResponse().getHeaders());
 });

 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getTitle()).contains("Selenium WebDriver");
}

void logHeaders(Headers headers) {
 log.debug("\t Headers:");
 headers.toJson().forEach((k, v) -> log.debug("\t\t{}:{}", k, v));
}

We create a listener for HTTP requests and log the captured data in the console.

We create a listener for HTTP responses and log the captured data in the console.

Full-page screenshot
Another possible use of the CDP is making screenshots of a full page (i.e., capture the
content page beyond the viewport). Example 5-35 demonstrates this feature in
Chrome.

Example 5-35. Test making a full-page screenshot using CDP in Chrome

@Test
void testFullPageScreenshotChrome() throws IOException {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/long-page.html");
 WebDriverWait wait = new WebDriverWait(driver, Duration.ofSeconds(10));
 wait.until(ExpectedConditions.presenceOfNestedElementsLocatedBy(
 By.className("container"), By.tagName("p")));

The Chrome DevTools Protocol | 183

 GetLayoutMetricsResponse metrics = devTools
 .send(Page.getLayoutMetrics());
 Rect contentSize = metrics.getContentSize();
 String screenshotBase64 = devTools
 .send(Page.captureScreenshot(Optional.empty(), Optional.empty(),
 Optional.of(new Viewport(0, 0, contentSize.getWidth(),
 contentSize.getHeight(), 1)),
 Optional.empty(), Optional.of(true)));
 Path destination = Paths.get("fullpage-screenshot-chrome.png");
 Files.write(destination, Base64.getDecoder().decode(screenshotBase64));

 assertThat(destination).exists();
}

We load the practice page containing a long text (and therefore, its content goes
beyond the standard viewport).

We wait until the paragraphs are loaded.

We get the page layout metrics (to calculate the page dimensions).

We send the CDP command to make a screenshot beyond the page viewport. As
a result, we obtain the screenshot as a string in Base64.

We decode the Base64 content into a PNG file.

We assert the PNG file exists at the end of the test.

This feature is available in other browsers with a full implementation of the CDP,
such as Chrome or Edge. Nevertheless, it might not be available in others like Firefox.
Luckily, Firefox supports the same characteristic through the method getFullPage
ScreenshotAs() available in FirefoxDriver objects. Example 5-36 shows a test using
this method and Firefox.

Example 5-36. Test making a full-page screenshot using Firefox

@Test
void testFullPageScreenshotFirefox() throws IOException {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/long-page.html");
 WebDriverWait wait = new WebDriverWait(driver, Duration.ofSeconds(10));
 wait.until(ExpectedConditions.presenceOfNestedElementsLocatedBy(
 By.className("container"), By.tagName("p")));

 byte[] imageBytes = ((FirefoxDriver) driver)
 .getFullPageScreenshotAs(OutputType.BYTES);
 Path destination = Paths.get("fullpage-screenshot-firefox.png");
 Files.write(destination, imageBytes);

184 | Chapter 5: Browser-Specific Manipulation

 assertThat(destination).exists();
}

We make the whole page screenshot. As with the regular screenshots (see
Table 4-2 in Chapter 4), the output type can be FILE, BASE64, or BYTES. We use
the latter to get the screenshot as a byte array.

Performance metrics
CDP allows gathering runtime performance metrics, such as number of documents
loaded, number of DOM nodes, time to load DOM, and script duration, among
many others. Example 5-37 shows a test gathering these metrics and showing them in
the standard output.

Example 5-37. Test gathering performance metrics

@Test
void testPerformanceMetrics() {
 devTools.send(Performance.enable(Optional.empty()));
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");

 List<Metric> metrics = devTools.send(Performance.getMetrics());
 assertThat(metrics).isNotEmpty();
 metrics.forEach(metric -> log.debug("{}: {}", metric.getName(),
 metric.getValue()));
}

We enable collecting metrics.

We gather all metrics.

Extra headers
CDP allows additional headers at the HTTP level. To that aim, we need to send the
command Network.setExtraHTTPHeaders() in a CDP session. Example 5-38 shows
a test that uses this command to add the HTTP header Authorization, for sending
credentials (username and password) in a web page that requires basic authentication
to log in.

Example 5-38. Test adding extra HTTP headers

@Test
void testExtraHeaders() {
 devTools.send(Network.enable(Optional.empty(), Optional.empty(),
 Optional.empty()));

The Chrome DevTools Protocol | 185

 String userName = "guest";
 String password = "guest";
 Map<String, Object> headers = new HashMap<>();
 String basicAuth = "Basic " + new String(Base64.getEncoder()
 .encode(String.format("%s:%s", userName, password).getBytes()));
 headers.put("Authorization", basicAuth);
 devTools.send(Network.setExtraHTTPHeaders(new Headers(headers)));

 driver.get("https://jigsaw.w3.org/HTTP/Basic/");
 String bodyText = driver.findElement(By.tagName("body")).getText();
 assertThat(bodyText).contains("Your browser made it!");
}

We encode the username and password in Base64.

We create the authorization header.

We open a web page protected with basic authentication.

We verify that the page is correctly displayed.

Block URLs
CDP provides the ability to block given URLs in a session. Example 5-39 provides a
test blocking the practice web page logo URL. If you run this test and inspect the
browser during the execution, you will discover that this logo is not displayed on the
page.

Example 5-39. Test blocking a URL

@Test
void testBlockUrl() {
 devTools.send(Network.enable(Optional.empty(), Optional.empty(),
 Optional.empty()));

 String urlToBlock =
 "https://bonigarcia.dev/selenium-webdriver-java/img/hands-on-icon.png";
 devTools.send(Network.setBlockedURLs(ImmutableList.of(urlToBlock)));

 devTools.addListener(Network.loadingFailed(), loadingFailed -> {
 BlockedReason reason = loadingFailed.getBlockedReason().get();
 log.debug("Blocking reason: {}", reason);
 assertThat(reason).isEqualTo(BlockedReason.INSPECTOR);
 });

 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getTitle()).contains("Selenium WebDriver");
}

186 | Chapter 5: Browser-Specific Manipulation

We block a given URL.

We create a listener to trace the failed events.

Device emulation
Another feature provided by CDP is the ability to emulate mobile devices (e.g.,
smartphones, tablets). Example 5-40 illustrates this usage. This test first overrides the
user agent by sending the command Network.setUserAgentOverride(). Then, it
emulates the device metrics sending the command Emulation.setDeviceMetrics
Override.

Example 5-40. Test emulating a mobile device

@Test
void testDeviceEmulation() {
 // 1. Override user agent (Apple iPhone 6)
 String userAgent = "Mozilla/5.0 (iPhone; CPU iPhone OS 8_0 like Mac OS X)"
 + "AppleWebKit/600.1.3 (KHTML, like Gecko)"
 + "Version/8.0 Mobile/12A4345d Safari/600.1.4";
 devTools.send(Network.setUserAgentOverride(userAgent, Optional.empty(),
 Optional.empty(), Optional.empty()));

 // 2. Emulate device dimension
 Map<String, Object> deviceMetrics = new HashMap<>();
 deviceMetrics.put("width", 375);
 deviceMetrics.put("height", 667);
 deviceMetrics.put("mobile", true);
 deviceMetrics.put("deviceScaleFactor", 2);
 ((ChromeDriver) driver).executeCdpCommand(
 "Emulation.setDeviceMetricsOverride", deviceMetrics);

 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getTitle()).contains("Selenium WebDriver");
}

We override the user agent for emulating an Apple iPhone 6.

We override the device screen parameters.

Console listeners
CDP allows you to implement listeners to monitor console events, i.e., a web page
JavaScript log and error traces. Example 5-41 shows the test. This test uses a web page
in the practice site that intentionally traces several JavaScript messages (using the
commands console.log(), console.error(), etc.) and also throws a JavaScript
exception.

The Chrome DevTools Protocol | 187

Example 5-41. Test listening to console events

@Test
void testConsoleListener() throws Exception {
 CompletableFuture<ConsoleEvent> futureEvents = new CompletableFuture<>();
 devTools.getDomains().events()
 .addConsoleListener(futureEvents::complete);

 CompletableFuture<JavascriptException> futureJsExc = new CompletableFuture<>();
 devTools.getDomains().events()
 .addJavascriptExceptionListener(futureJsExc::complete);

 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/console-logs.html");

 ConsoleEvent consoleEvent = futureEvents.get(5, TimeUnit.SECONDS);
 log.debug("ConsoleEvent: {} {} {}", consoleEvent.getTimestamp(),
 consoleEvent.getType(), consoleEvent.getMessages());

 JavascriptException jsException = futureJsExc.get(5,
 TimeUnit.SECONDS);
 log.debug("JavascriptException: {} {}", jsException.getMessage(),
 jsException.getSystemInformation());
}

We create a listener for console events.

We create another listener for JavaScript errors.

We open the practice page that writes messages in the browser console.

We wait a maximum of five seconds until a console event is received.

We write the information on the received console event in the standard output.

We repeat the same procedure for the JavaScript exceptions.

Geolocation override
Another feature provided by CDP is the ability to override the geolocation coordi‐
nates handled by the hosting device. Example 5-42 demonstrates how to do it. This
test sends the command Emulation.setGeolocationOverride(), which accepts
three optional arguments: latitude, longitude, and accuracy.

188 | Chapter 5: Browser-Specific Manipulation

Example 5-42. Test overriding location coordinates

@Test
void testGeolocationOverride() {
 devTools.send(Emulation.setGeolocationOverride(Optional.of(48.8584),
 Optional.of(2.2945), Optional.of(100)));

 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/geolocation.html");
 driver.findElement(By.id("get-coordinates")).click();

 WebDriverWait wait = new WebDriverWait(driver, Duration.ofSeconds(5));
 WebElement coordinates = driver.findElement(By.id("coordinates"));
 wait.until(ExpectedConditions.visibilityOf(coordinates));
}

We override the geographical location using the coordinates of the Eiffel Tower
(Paris, France).

We open a practice web page that accesses the device location and displays the
coordinates to the user.

Manage cookies
CDP also allows managing web cookies. Example 5-43 shows a test reading the cook‐
ies of a practice page that manages some cookies.

Example 5-43. Test managing cookies

@Test
void testManageCookies() {
 devTools.send(Network.enable(Optional.empty(), Optional.empty(),
 Optional.empty()));
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/cookies.html");

 // Read cookies
 List<Cookie> cookies = devTools.send(Network.getAllCookies());
 cookies.forEach(cookie -> log.debug("{}={}", cookie.getName(),
 cookie.getValue()));
 List<String> cookieName = cookies.stream()
 .map(cookie -> cookie.getName()).sorted()
 .collect(Collectors.toList());
 Set<org.openqa.selenium.Cookie> seleniumCookie = driver.manage()
 .getCookies();
 List<String> selCookieName = seleniumCookie.stream()
 .map(selCookie -> selCookie.getName()).sorted()
 .collect(Collectors.toList());
 assertThat(cookieName).isEqualTo(selCookieName);

The Chrome DevTools Protocol | 189

 // Clear cookies
 devTools.send(Network.clearBrowserCookies());
 List<Cookie> cookiesAfterClearing = devTools
 .send(Network.getAllCookies());
 assertThat(cookiesAfterClearing).isEmpty();

 driver.findElement(By.id("refresh-cookies")).click();
}

We read all the cookies of a web page.

We verify that the cookies read using the CDP command and the cookies read
with the Selenium WebDriver API (using getCookies();) are the same.

We remove all cookies.

We verify there are no cookies at this point.

Load insecure pages
CDP also allows you to load unsafe web pages (i.e., web pages that use HTTPS, but
whose certificate is not valid). Example 5-44 illustrates this feature.

Example 5-44. Test loading an insecure web page

@Test
void testLoadInsecure() {
 devTools.send(Security.enable());
 devTools.send(Security.setIgnoreCertificateErrors(true));
 driver.get("https://expired.badssl.com/");

 String bgColor = driver.findElement(By.tagName("body"))
 .getCssValue("background-color");
 Color red = new Color(255, 0, 0, 1);
 assertThat(Color.fromString(bgColor)).isEqualTo(red);
}

We enable tracking security.

We ignore certificate errors.

We verify the page is correctly loaded.

190 | Chapter 5: Browser-Specific Manipulation

Location Context
The Selenium WebDriver API provides the interface LocationContext for mocking
the geolocation coordinates of the user device. This interface is implemented by
ChromeDriver, EdgeDriver, and OperaDriver. Therefore, these drivers can invoke
the method setLocation() to specify custom coordinates (latitude, longitude, and
altitude). Example 5-45 shows a basic test using this feature.

Example 5-45. Test setting custom geolocation coordinates through LocationContext

@Test
void testLocationContext() {
 LocationContext location = (LocationContext) driver;
 location.setLocation(new Location(27.5916, 86.5640, 8850));

 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/geolocation.html");
 driver.findElement(By.id("get-coordinates")).click();

 WebDriverWait wait = new WebDriverWait(driver, Duration.ofSeconds(5));
 WebElement coordinates = driver.findElement(By.id("coordinates"));
 wait.until(ExpectedConditions.visibilityOf(coordinates));
}

We cast the driver object to LocationContext (only possible for Chrome, Edge,
or Opera).

We open a practice page where the geolocation coordinates are displayed to the
end user.

We set a custom location, in this case, the coordinates of Mount Everest (on the
Nepal-China border).

We assert the coordinates are visible on the page.

Web Authentication
The Web Authentication API (also known as WebAuthn) is a W3C specification that
allows servers to register and authenticate users using public key cryptography
instead of passwords. Major browsers (Chrome, Firefox, Edge, and Safari) have sup‐
ported WebAuthn since January 2019. These browsers allow credential creation and
assertion using U2F (Universal 2nd Factor) tokens, which are Universal Serial Bus
(USB) or Near-Field Communication (NFC) secure devices.

Location Context | 191

https://www.w3.org/TR/webauthn-2

In the classic web authentication approach, users send their username and password
to the server using a web form. In WebAuthn, the web server uses the Web Authenti‐
cation API to prompt the user to create a private-public key pair (known as a
credential). The private key is stored securely on the user’s device, and the public key
is sent to the server. Then, the server can use that public key to validate user identity.

As of version 4, Selenium WebDriver supports WebAuthn out of the box. To that aim,
the Selenium WebDriver API provides the interface HasVirtualAuthenticator.
Instead of using secure physical devices, this interface allows us to use virtual authen‐
ticators. Although the RemoteWebDriver class implements this interface, at the time of
this writing, this mechanism is supported only in Chromium-based browsers, i.e.,
Chrome and Edge. Example 5-46 shows a test using the Web Authentication API.

Example 5-46. Test using WebAuthn

@Test
void testWebAuthn() {
 driver.get("https://webauthn.io/");
 HasVirtualAuthenticator virtualAuth = (HasVirtualAuthenticator) driver;
 VirtualAuthenticator authenticator = virtualAuth
 .addVirtualAuthenticator(new VirtualAuthenticatorOptions());

 String randomId = UUID.randomUUID().toString();
 driver.findElement(By.id("input-email")).sendKeys(randomId);
 WebDriverWait wait = new WebDriverWait(driver, Duration.ofSeconds(20));
 driver.findElement(By.id("register-button")).click();
 wait.until(ExpectedConditions.textToBePresentInElementLocated(
 By.className("popover-body"), "Success! Now try logging in"));

 driver.findElement(By.id("login-button")).click();
 wait.until(ExpectedConditions.textToBePresentInElementLocated(
 By.className("main-content"), "You're logged in!"));

 virtualAuth.removeVirtualAuthenticator(authenticator);
}

We open a website protected with the Web Authentication API.

We cast the driver object to HasVirtualAuthenticator.

We create and register a new virtual authenticator.

We send a random identifier in the web form.

We submit that identifier and wait until it is received.

We click the button to log in.

192 | Chapter 5: Browser-Specific Manipulation

We verify the authentication has been correctly performed.

We remove the virtual authenticator.

Print Page
Selenium WebDriver allows printing web pages to PDF documents. To do that, the
Selenium WebDriver API provides the interface PrintsPage. This interface is inher‐
ited by the class RemoteWebDriver, and therefore, it is available for all browsers sup‐
ported by Selenium WebDriver. Nevertheless, there are slight differences when using
one or another browser. For instance, printing pages is possible when using Chrome
and Edge only if the browser is started in headless mode. For Firefox, this restriction
is not required, and we can use Firefox as usual. Example 5-47 shows the test logic for
printing a web page to PDF. You can find the complete tests for Firefox and headless
Chrome/Edge in the examples repository.

Example 5-47. Test printing a web page to PDF

@Test
void testPrint() throws IOException {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 PrintsPage pg = (PrintsPage) driver;
 PrintOptions printOptions = new PrintOptions();
 Pdf pdf = pg.print(printOptions);

 String pdfBase64 = pdf.getContent();
 assertThat(pdfBase64).contains("JVBER");

 byte[] decodedImg = Base64.getDecoder()
 .decode(pdfBase64.getBytes(StandardCharsets.UTF_8));
 Path destinationFile = Paths.get("my-pdf.pdf");
 Files.write(destinationFile, decodedImg);
}

We cast the driver object to PrintsPage.

We print the current web page to PDF using the default configuration.

We get the content of the PDF in Base64.

We verify this content contains the file signature (the “magic word” JVBER).

We convert the Base64 to a raw byte array.

We write the PDF content (byte array) to a local file.

Print Page | 193

https://github.com/bonigarcia/selenium-webdriver-java

WebDriver BiDi
The WebDriver BiDi is a W3C draft that defines the bidirectional WebDriver proto‐
col. Instead of the strict command/response format of the WebDriver protocol, BiDi
introduces a WebSocket connection between driver and browser to enable bidirec‐
tional communication. This way, WebDriver BiDi will allow different operations
using a fast bidirectional transport (i.e., without polling the browser to get responses).

In Selenium WebDriver, the aim is that BiDi will be a standardized replacement in the
long run for advanced operations currently supported by CDP. For example, the Sele‐
nium WebDriver API supports implementing event listeners through the HasLog
Events interface. This interface works on top of CDP at the time of this writing. Nev‐
ertheless, it will use BiDi internally in future Selenium WebDriver releases, providing
more robust cross-browser compatibility. HasLogEvents allows implementing listen‐
ers for the following events:

domMutation

To capture events about changes in the DOM. Example 5-48 shows a test imple‐
menting a listener for these events.

consoleEvent

To capture events about changes in the browser console, such as JavaScript traces.
Example 5-49 shows a second test implementing this type of listener.

Example 5-48. Test implementing a listener for DOM mutation events

@Test
void testDomMutation() throws InterruptedException {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");

 HasLogEvents logger = (HasLogEvents) driver;
 JavascriptExecutor js = (JavascriptExecutor) driver;

 AtomicReference<DomMutationEvent> seen = new AtomicReference<>();
 CountDownLatch latch = new CountDownLatch(1);
 logger.onLogEvent(CdpEventTypes.domMutation(mutation -> {
 seen.set(mutation);
 latch.countDown();
 }));

 WebElement img = driver.findElement(By.tagName("img"));
 String newSrc = "img/award.png";
 String script = String.format("arguments[0].src = '%s';", newSrc);
 js.executeScript(script, img);

 assertThat(latch.await(10, TimeUnit.SECONDS)).isTrue();
 assertThat(seen.get().getElement().getAttribute("src"))

194 | Chapter 5: Browser-Specific Manipulation

https://w3c.github.io/webdriver-bidi

 .endsWith(newSrc);
}

We cast the driver object to HasLogEvents. This cast is only possible for Chrome
and Edge.

We create a listener for DOM mutation events. This test expects to capture only
one event, synchronized using a countdown latch.

We force a DOM mutation by executing JavaScript to change an image source.

We verify the event occurs at most in 10 seconds.

We check the image source has changed.

Example 5-49. Test implementing a listener for console events

@Test
void testConsoleEvents() throws InterruptedException {
 HasLogEvents logger = (HasLogEvents) driver;

 CountDownLatch latch = new CountDownLatch(4);
 logger.onLogEvent(CdpEventTypes.consoleEvent(consoleEvent -> {
 log.debug("{} {}: {}", consoleEvent.getTimestamp(),
 consoleEvent.getType(), consoleEvent.getMessages());
 latch.countDown();
 }));

 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/console-logs.html");

 assertThat(latch.await(10, TimeUnit.SECONDS)).isTrue();
}

We create a listener for console events. This test expects to capture four events
synchronized using a countdown latch.

We open the practice web page, which logs several messages in the JavaScript
console.

WebDriver BiDi | 195

Summary and Outlook
This chapter presented a practical overview of the Selenium WebDriver API features
that are not interoperable among browsers. First, you discovered how to use capabili‐
ties to run browsers in headless mode, change the page loading strategy, use web
extensions, or manage browser pop-ups (e.g., geolocation, notifications, or getting
user media), among other capabilities. Then, you learned that Selenium WebDriver
provides different ways to interact with web browsers using the CDP. This mecha‐
nism allows incorporating a lot of powerful features in our Selenium WebDriver tests,
such as emulating network conditions, basic and digest authentication, network mon‐
itoring, handling HTTP headers, or blocking URLs, to name a few. Then, you discov‐
ered other browser-specific features, such as location context, web authentication
(WebAuthn), and printing web pages to PDF documents. Finally, you learned about
WebDriver BiDi, a draft standardization that defines bidirectional communication
with browsers for automation purposes. BiDi is in an early stage at the time of this
writing. The aim is that Selenium WebDriver will support different standard features
on top of BiDi in future releases.

The next chapter concludes our journey with the Selenium WebDriver API. The
chapter explains how to use this API to control remote browsers. These browsers can
be hosted on Selenium Grid, a cloud provider (e.g., Sauce Labs, BrowserStack, or
CrossBrowserTesting), or executed in Docker containers.

196 | Chapter 5: Browser-Specific Manipulation

CHAPTER 6

Remote WebDriver

So far, the examples explained in this book use web browsers locally installed on the
machine that executes the tests. This chapter covers another relevant feature of the
Selenium WebDriver API, i.e., the ability to use remote browsers (i.e., installed in
other hosts). First, we review the architecture that allows using remote browsers in
Selenium WebDriver. Second, we study Selenium Grid, a networked infrastructure
that provides remote browsers for Selenium WebDriver tests. Third, we analyze some
of the most relevant cloud providers, i.e., companies that provide managed services
for automated testing. Finally, we explore how to use Docker to support the browser
infrastructure for Selenium.

Selenium WebDriver Architecture
As introduced in Chapter 1, Selenium WebDriver is a library that allows controlling
web browsers programmatically. The automation is based on the native capabilities of
each browser. Therefore, we need to place a binary file called a driver between the
script (typically, a test) using the Selenium WebDriver API and the browser. The
examples you have seen so far in this book use local browsers, i.e., browsers installed
in the same machine that executes the test that uses the Selenium WebDriver API.
Figure 6-1 illustrates this approach. In this case, and when using the Java language
binding of the Selenium WebDriver API, we need to create an instance of Chrome
Driver to control Chrome, FirefoxDriver for Firefox, etc.

197

Figure 6-1. Selenium WebDriver architecture using local browsers

The communication protocol that supports this process is called W3C WebDriver.
This standard protocol is based on JSON messages over HTTP. Thanks to this, the
Selenium WebDriver architecture can be distributed to different interconnected com‐
puters (hosts). Figure 6-2 shows a schematic representation of a remote architecture.

Figure 6-2. Selenium WebDriver architecture using remote browsers

198 | Chapter 6: Remote WebDriver

In this case, the Selenium WebDriver API sends W3C WebDriver messages to a
server-side component usually called Selenium Server. This server acts as a proxy of
the client requests to other hosts that provide web browsers where the automation
happens. This remote architecture eases cross-browser testing (i.e., verifying web
applications in multiple browser types, versions, or operating systems) and parallel
test execution.

Creation of RemoteWebDriver Objects
The Selenium WebDriver API provides the class RemoteWebDriver to control remote
browsers. As shown in Figure 2-2, this class is the parent of the rest of the WebDriver
classes that drive local browsers (i.e., ChromeDriver, FirefoxDriver, etc.). This way,
you can use RemoteWebDriver objects in the same way we have previously studied in
this book.

RemoteWebDriver Constructor
There are different ways to instantiate a RemoteWebDriver object. The most common
way is to invoke its constructor by passing two arguments: the URL of the Selenium
Server and the required capabilities. As shown in Figure 5-1, these capabilities are
objects that inherit from the Capabilities interface (e.g., ChromeOptions, Firefox
Options, etc.). Example 6-1 shows a test setup. You can find the complete test in this
book’s code repository.

There is a second RemoteWebDriver constructor, which accepts
only one parameter for the desired capabilities. In this case, the
Selenium Server URL is read from the Java system property
webdriver.remote.server. You can find an example of this feature
in the examples repository.

Example 6-1. Instantiation of a RemoteWebDriver object using the constructor

@BeforeEach
void setup() throws MalformedURLException {
 URL seleniumServerUrl = new URL("http://localhost:4444/");
 assumeThat(isOnline(seleniumServerUrl)).isTrue();

 ChromeOptions options = new ChromeOptions();
 driver = new RemoteWebDriver(seleniumServerUrl, options);
}

We create a Java URL object with the Selenium Server address.

Creation of RemoteWebDriver Objects | 199

https://github.com/bonigarcia/selenium-webdriver-java

We assume this URL is online. For that, we create an AssertJ assumption by
invoking the static method isOnline available on WebDriverManager. As a
result, the test is skipped when the Selenium Server is offline.

We instantiate a ChromeOptions object to specify the required capabilities.

We invoke the RemoteWebDriver constructor using the Selenium Server URL and
the Chrome options as arguments.

We use a ChromeOptions object without any particular setup to specify the required
capabilities in the previous example. In other words, we request to use a remote
Chrome browser using its default behavior. Nevertheless, we could use this object to
configure specific capabilities (e.g., headless browser, page loading strategies, device
emulation, etc.) as explained in Chapter 5. Moreover, since capabilities are internally
handled using key-value pairs that encapsulate specific browser aspects, we can man‐
age individual capabilities invoking the method options.setCapability(key,

value);. The Selenium WebDriver API provides the class CapabilityType to specify
the key of these capabilities. This class has a set of public attributes that can be used as
a key in the setCapability() method. Table 6-1 shows some of these attributes.

Table 6-1. CapabilityType attributes

Attribute Capability name Description
BROWSER_NAME browserName Browser name (e.g., chrome, firefox, or msedge)

PLATFORM_NAME platformName Platform name (e.g., WINDOWS, LINUX, MAC, ANDROID, IOS,
among others)

BROWSER_VERSION browserVersion Browser version

SUPPORTS_JAVASCRIPT javascriptEnabled Enable or disable JavaScript execution

PAGE_LOAD_STRATEGY pageLoadStrategy Page loading strategy (normal, eager, or none)

An alternative way to specify the required capabilities in a RemoteWebDriver object is
using an instance of DesiredCapabilities. Table 6-2 summarizes the methods pro‐
vided by these objects.

Table 6-2. DesiredCapabilities methods

Method Return Description
setBrowserName(String browserName) void Specify the browser name

setVersion(String version) void Specify the browser version

setPlatform(Platform platform) void Specify the platform name

200 | Chapter 6: Remote WebDriver

Method Return Description
setJavascriptEnabled(boolean
 javascriptEnabled)

void Enable or disable JavaScript execution

setAcceptInsecureCerts(boolean
 acceptInsecureCerts)

void Enable or disable loading insecure pages

acceptInsecureCerts() void Enable loading insecure pages

merge(Capabilities
 extraCapabilities)

DesiredCapabilities Merge with another capabilities object

DesiredCapabilities is still supported by Selenium WebDriver 4
since there is a lot of existing code relying on this feature. Never‐
theless, the recommended way to specify capabilities is using
browser-specific options (e.g., ChromeOptions, FirefoxOptions,
etc.).

RemoteWebDriver Builder
A second way to create RemoteWebDriver objects is using the built-in builder avail‐
able in the Selenium WebDriver API. Example 6-2 demonstrates how, using Edge as
the remote browser.

Example 6-2. Instantiation of a RemoteWebDriver object using the builder

@BeforeEach
void setup() throws MalformedURLException {
 URL seleniumServerUrl = new URL("http://localhost:4444/");
 assumeThat(isOnline(seleniumServerUrl)).isTrue();

 driver = RemoteWebDriver.builder().oneOf(new EdgeOptions())
 .address(seleniumServerUrl).build();
}

WebDriverManager Builder
Alternatively, we can also use WebDriverManager to create an instance of RemoteWeb
Driver. To that aim, we need to invoke the method remoteAddress() of a given man‐
ager to pass the Selenium Server URL. Example 6-3 shows a test setup using this
feature and Firefox as the remote browser.

Example 6-3. Instantiation of a RemoteWebDriver object using WebDriverManager

@BeforeEach
void setup() throws MalformedURLException {
 URL seleniumServerUrl = new URL("http://localhost:4444/");

Creation of RemoteWebDriver Objects | 201

 assumeThat(isOnline(seleniumServerUrl)).isTrue();

 driver = WebDriverManager.firefoxdriver()
 .remoteAddress(seleniumServerUrl).create();
}

Selenium-Jupiter
As usual, Selenium-Jupiter uses the parameter resolution feature provided by Jupiter.
This way, and concerning remote browsers, you need to declare a test (or construc‐
tor) parameter using the type RemoteWebDriver. Then, the following Selenium-
Jupiter annotations allow configuring the remote browser:

@DriverUrl

Annotation used to identify the Selenium Server URL. Alternatively, the annota‐
tion @EnabledIfDriverUrlOnline allows specifying this URL, and at the same
time, disables the test if that URL is not responding.

@DriverCapabilities

Annotation used to configure the desired capabilities.

Example 6-4 shows a Selenium-Jupiter test using a remote Chrome provided by a
local Selenium Server. This test will be skipped when the URL http://localhost:
4444/ is offline.

Example 6-4. Using a RemoteWebDriver object in Selenium-Jupiter test

@EnabledIfDriverUrlOnline("http://localhost:4444/")
@ExtendWith(SeleniumJupiter.class)
class RemoteChromeSelJupTest {

 @DriverCapabilities
 ChromeOptions options = new ChromeOptions();

 @Test
 void testRemote(RemoteWebDriver driver) {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getTitle()).contains("Selenium WebDriver");
 }

}

The RemoteWebDriver instantiation modes described in this section
are equivalent from a functional point of view. In other words,
these objects work in the same way. The difference between them is
the provided syntactic sugar (i.e., the style and expressiveness).

202 | Chapter 6: Remote WebDriver

Selenium Grid
As introduced in Chapter 1, Selenium Grid is a subproject of the Selenium suite that
allows creating a networked infrastructure for remote browsers accessible with the
W3C WebDriver protocol. Selenium Grid allows running parallel tests across differ‐
ent machines and different browsers. To that aim, Selenium Grid provides a Selenium
Server that you can control using an instance of RemoteWebDriver. There are three
ways to run Selenium Grid:

Standalone
A single host acts as Selenium Server and supplies the browsers in this mode. It
provides a simple way to run Selenium WebDriver tests in remote browsers.

Hub-nodes
A potential problem of the standalone mode is the scalability (since the Selenium
Server and the browsers are executed in the same home). Thus, the hub-nodes
architecture defines two types of components to solve this issue. First, one host
acts as hub (or Selenium Server). Then, one or most hosts are registered as nodes
in the hub, providing browsers to be controlled with Selenium WebDriver. This
architecture was introduced in Chapter 1 (see Figure 1-2).

Fully distributed
The standalone and the hub-nodes approaches are centralized architectures that
can degrade performance when the number of incoming requests increases. As of
Selenium 4, Selenium Grid provides a fully distributed mode that implements
load balancing mechanisms to solve this bottleneck.

The following subsections provide more details about these modes and explain how
to set up each approach.

Standalone
The standalone is the simplest approach for a Selenium Grid infrastructure. We can
execute this mode using the shell and Java code.

From the shell
First, we can use the shell and the Selenium Grid binary distribution to launch it.
Selenium Grid is developed in Java, and each release is distributed as a self-contained
JAR file with all its dependencies (also known as uber-JAR or fat-JAR). You can down‐
load this fat-JAR from the Selenium download page.

The Selenium Server automatically detects the drivers (e.g., chromedriver, gecko‐
driver, etc.) available in the system in the standalone mode. To that aim, it looks for
these drivers in the PATH environment variable. As usual, we can manage these driver
managers manually. Nevertheless, it is recommended to use WebDriverManager to

Selenium Grid | 203

https://www.selenium.dev/downloads

resolve the drivers automatically. Thus, and as explained in Appendix B, WebDriver‐
Manager can be used as a CLI tool. WebDriverManager CLI is distributed as a
fat-JAR, available for download on GitHub.

To illustrate this, Example 6-5 shows the shell commands required to resolve chrome‐
driver and geckodriver in a Linux machine with WebDriverManager CLI. Then, we
use the Selenium Grid fat-JAR to start a standalone grid. Notice that these commands
are executed in the same folder. This way, the drivers downloaded with WebDriver‐
Manager are available for Selenium Grid.

Example 6-5. Commands to resolve drivers with WebDriverManager CLI and to start
Selenium Grid in standalone mode using the shell

boni@linux:~/grid$ java -jar webdrivermanager-5.0.3-fat.jar resolveDriverFor chrome
[INFO] Using WebDriverManager to resolve chrome
[DEBUG] Detecting chrome version using online commands.properties
[DEBUG] Running command on the shell: [google-chrome, --version]
[DEBUG] Result: Version=94.0.4606.71
[DEBUG] Latest version of chromedriver according to
 https://chromedriver.storage.googleapis.com/LATEST_RELEASE_94 is 94.0.4606.61
[INFO] Using chromedriver 94.0.4606.61 (resolved driver for Chrome 94)
[INFO] Reading https://chromedriver.storage.googleapis.com/ to seek
 chromedriver
[DEBUG] Driver to be downloaded chromedriver 94.0.4606.61
[INFO] Downloading https://chromedriver.storage.googleapis.com/94.0.4606.61/
 chromedriver_linux64.zip
[INFO] Extracting driver from compressed file chromedriver_linux64.zip
[INFO] Driver location: /home/boni/grid/chromedriver

boni@linux:~/grid$ java -jar webdrivermanager-5.0.3-fat.jar resolveDriverFor firefox
[INFO] Using WebDriverManager to resolve firefox
[DEBUG] Detecting firefox version using online commands.properties
[DEBUG] Running command on the shell: [firefox, -v]
[DEBUG] Result: Version=92.0.0.7916
[DEBUG] Getting driver version for firefox92 from online versions.properties
[INFO] Using geckodriver 0.30.0 (resolved driver for Firefox 92)
[INFO] Reading https://api.github.com/repos/mozilla/geckodriver/releases to
 seek geckodriver
[DEBUG] Driver to be downloaded geckodriver 0.30.0
[INFO] Downloading https://github.com/mozilla/geckodriver/releases/download/
 v0.30.0/geckodriver-v0.30.0-linux64.tar.gz
[INFO] Extracting driver from compressed file geckodriver-v0.30.0-linux64.tar.gz
[INFO] Driver location: /home/boni/grid/geckodriver

boni@linux:~/grid$ java -jar selenium-server-4.0.0.jar standalone
INFO [LogManager$RootLogger.log] - Using the system default encoding
INFO [OpenTelemetryTracer.createTracer] - Using OpenTelemetry for tracing
INFO [NodeOptions.getSessionFactories] - Detected 8 available processors
INFO [NodeOptions.discoverDrivers] - Discovered 2 driver(s)
INFO [NodeOptions.report] - Adding Chrome for {"browserName": "chrome"} 8 times

204 | Chapter 6: Remote WebDriver

https://github.com/bonigarcia/webdrivermanager/releases

INFO [NodeOptions.report] - Adding Firefox for {"browserName": "firefox"} 8 times
INFO [Node.<init>] - Binding additional locator mechanisms: name, id, relative
INFO [LocalDistributor.add] - Added node 41045bd8-ec7e-43c9-84bd-f63f7aca59ed
 at http://192.168.56.1:4444. Health check every 120s
INFO [GridModel.setAvailability] - Switching node 41045bd8-ec7e-43c9-84bd-
 f63f7aca59ed (uri: http://192.168.56.1:4444) from DOWN to UP
INFO [Standalone.execute] - Started Selenium Standalone 4.0.0 (revision
 3a21814679): http://192.168.56.1:4444

We use WebDriverManager CLI to resolve chromedriver.

We use WebDriverManager CLI to resolve geckodriver (the driver required for
Firefox).

We start Selenium Grid in standalone mode in the same folder (which contains
chromedriver and geckodriver).

After these commands, the standalone Selenium Server listens to incoming HTTP
requests in port 4444 of the localhost. Therefore, we can create an instance of Remote
WebDriver using that URL (e.g., http://localhost:4444/ if the test executes in the
same host) and the required capabilities (for Chrome or Firefox, in this case). For
instance, as follows:

WebDriver driver = new RemoteWebDriver("http://localhost:4444/",
 new ChromeOptions());

In Selenium Grid 3, the default Selenium Server URL is http://
localhost:4444/wd/hub. In Selenium Grid 4, although this URL
should also work, the path /wd/hub is no longer required.

Another helpful feature provided by Selenium Grid is its web console. This console is
a web UI accessible in the Selenium Server URL that allows monitoring of the avail‐
able browsers registered in the grid and the sessions in execution.

Figure 6-3 shows a screenshot of the console of the previous standalone grid. Notice
that in this case, the standalone Selenium Server can serve up to eight concurrent ses‐
sions (the same number of the available processors in the machine running the grid)
of Chrome and Firefox.

Selenium Grid | 205

Figure 6-3. Selenium Grid console

From Java code
An alternative way to start Selenium Grid is using Java. In addition to the fat-JAR,
Selenium Grid is released to Maven Central using org.seleniumhq.selenium as
groupId and selenium-grid as artifactId. This way, we need to resolve its coordi‐
nates in our project setup (Maven or Gradle) to use it in our Java project (see Appen‐
dix B for the configuration details). Example 6-6 demonstrates how to start Selenium
Grid in standalone mode from a Java test case.

Example 6-6. Test starting Selenium Grid in standalone mode

static URL seleniumServerUrl;

@BeforeAll
static void setupAll() throws MalformedURLException {
 int port = PortProber.findFreePort();
 WebDriverManager.chromedriver().setup();
 Main.main(
 new String[] { "standalone", "--port", String.valueOf(port) });

 seleniumServerUrl = new URL(
 String.format("http://localhost:%d/", port));
}

@BeforeEach
void setup() {

206 | Chapter 6: Remote WebDriver

 driver = new RemoteWebDriver(seleniumServerUrl, new ChromeOptions());
}

We find a free port on the localhost. For that, we use the class PortProber, avail‐
able on Selenium WebDriver API.

We use WebDriverManager to resolve chromedriver since the standalone grid to
be started will serve Chrome browsers.

We start Selenium Grid in standalone mode, calling its main method.

We create a Java URL using the port previously selected.

We create an instance of RemoteWebDriver. As usual, we use this object in the test
logic to invoke the Selenium WebDriver API and control the browser (see the
examples repository for the entire class).

Hub-nodes
The classic architecture of Selenium Grid involves two types of hosts: the hub (i.e.,
the Selenium Server) and a group of nodes. Like in the standalone mode, we can use
the Selenium Grid fat-JAR to start this mode in the shell. First, we start the hub in a
host. Then, we register one or more nodes in the same or different host. Example 6-7
shows the execution of these commands in a Windows console.

Example 6-7. Command to start Selenium Grid in hub-nodes mode using the shell

C:\grid>java -jar selenium-server-4.0.0.jar hub
INFO [LogManager$RootLogger.log] - Using the system default encoding
INFO [OpenTelemetryTracer.createTracer] - Using OpenTelemetry for tracing
INFO [BoundZmqEventBus.<init>] - XPUB binding to [binding to tcp://*:4442,
 advertising as tcp://192.168.56.1:4442], XSUB binding to [binding to
 tcp://*:4443, advertising as tcp://192.168.56.1:4443]
INFO [UnboundZmqEventBus.<init>] - Connecting to tcp://192.168.56.1:4442 and
 tcp://192.168.56.1:4443
INFO [UnboundZmqEventBus.<init>] - Sockets created
INFO [UnboundZmqEventBus.<init>] - Event bus ready
INFO [Hub.execute] - Started Selenium Hub 4.0.0 (revision 3a21814679):
 http://192.168.56.1:4444
INFO [Node.<init>] - Binding additional locator mechanisms: relative, name, id
INFO [LocalDistributor.add] - Added node 98c35075-e5f0-4168-be97-c277e4f40d8d
 at http://192.168.56.1:5555. Health check every 120s
INFO [GridModel.setAvailability] - Switching node 98c35075-e5f0-4168-be97-
 c277e4f40d8d (uri: http://192.168.56.1:5555) from DOWN to UP

C:\grid>java -jar selenium-server-4.0.0.jar node

Selenium Grid | 207

INFO [LogManager$RootLogger.log] - Using the system default encoding
INFO [OpenTelemetryTracer.createTracer] - Using OpenTelemetry for tracing
INFO [UnboundZmqEventBus.<init>] - Connecting to tcp://*:4442 and tcp://*:4443
INFO [UnboundZmqEventBus.<init>] - Sockets created
INFO [UnboundZmqEventBus.<init>] - Event bus ready
INFO [NodeServer.createHandlers] - Reporting self as: http://192.168.56.1:5555
INFO [NodeOptions.getSessionFactories] - Detected 8 available processors
INFO [NodeOptions.discoverDrivers] - Discovered 2 driver(s)
INFO [NodeOptions.report] - Adding Chrome for {"browserName": "chrome"} 8 times
INFO [NodeOptions.report] - Adding Firefox for {"browserName": "firefox"} 8
 times
INFO [Node.<init>] - Binding additional locator mechanisms: relative, name, id
INFO [NodeServer$1.start] - Starting registration process for node id
 98c35075-e5f0-4168-be97-c277e4f40d8d
INFO [NodeServer.execute] - Started Selenium node 4.0.0 (revision
 3a21814679): http://192.168.56.1:5555
INFO [NodeServer$1.lambda$start$1] - Sending registration event...
INFO [NodeServer.lambda$createHandlers$2] - Node has been added

We start the hub. By default, this server listens to W3C WebDriver HTTP
requests in port 4444 and TCP ports 4442 and 4443 for registering nodes.

In a second console, we register the node(s). In this example, this command is
executed in the same host as the hub. Moreover, it supposes that the required
drivers (e.g., chromedriver and geckodriver) are already resolved (as in
Example 6-5). To start nodes from another host, we would need to invoke the fol‐
lowing command:

java -jar selenium-server-4.0.0.jar node --hub http://<hub>:4444

In the same way as the standalone mode, you can start a hub-nodes
grid using Java code. For that, you need to change the parameters
to invoke the Selenium Grid main class following the same syntax
of the CLI commands for hub and nodes.

Fully Distributed
As of version 4, we can execute a Selenium Grid infrastructure following a fully dis‐
tributed architecture. The decisive aspect of this approach is scalability. Specialized
nodes take care of different automation and infrastructure management aspects in
this mode. These nodes are:

Router
Node acting as a single entry point to the Grid. This component listens to W3C
WebDriver commands from Selenium scripts.

208 | Chapter 6: Remote WebDriver

Session Queue
Node that stores the new session requests. These incoming sessions wait to be
read by the Distributor.

Distributor
Node aware of all nodes and their capabilities. It asks for new session requests to
the Session Queue in regular intervals.

Event Bus
Component that provides a message-oriented communication channel among
several members of the Grid architecture. This communication is represented
with dotted lines in Figures 6-4 and 6-5.

Session Map
It keeps the relation of the WebDriver sessions and the nodes where the sessions
are being executed.

Node(s)
Hosts that provide web browsers (and their corresponding drivers) for automa‐
tion based on Selenium WebDriver.

In a hub-nodes architecture, the hub aggregates the responsibilities
of the Router, Session Queue, Distributor, Event Bus, and Session
Map of the fully distributed mode.

The following subsections provide details about the most relevant processes in a fully
distributed Selenium Grid: node registration, new session, and other WebDriver
commands.

Node registration
The first process required to operate a distributed Selenium Grid is registering one or
more nodes. To that aim, nodes need to register their capabilities in the Distributor.
Figure 6-4 illustrates this process, composed of three steps:

1. A node sends a message through the Event Bus to announce its capabilities.
2. This message reaches the Distributor, which stores the relationship between

nodes and capabilities.
3. The Distributor double-checks that the node exists by exchanging HTTP mes‐

sages (solid line) with the source node.

Selenium Grid | 209

Figure 6-4. Node registration in a Selenium Grid distributed architecture

New session
At some point, a script (typically a test case) will try to start a new session to drive a
browser automatically. Figure 6-5 describes the communication required to carry out
this process in a fully distributed Selenium Grid, namely:

1. A script/test using the Selenium WebDriver API sends a request to the Router to
create a new session (i.e., to drive a browser programmatically).

2. The Router creates a new entry in the Session Queue to store this new session
request.

3. The Distributor asks the Session Queue for incoming new session requests in
intervals.

4. Once the Distributor discovers a new session request, it checks if a node can sup‐
port this session. If the session is possible (i.e., a node previously registered in the
Distributor offers the required capabilities), the Distributor creates a new session
with the node.

5. The Distributor sends an HTTP message to the Session Map to store the new ses‐
sion. The Session Map stores a unique session identifier (session id) that univo‐
cally associates the node executing the browser session.

210 | Chapter 6: Remote WebDriver

Figure 6-5. New session in a Selenium Grid distributed architecture

WebDriver commands
Once the session is established, the Selenium WebDriver API script will continue
sending W3C WebDriver commands to control the web browser in the remote node.
Figure 6-6 shows how this communication occurs in a distributed Selenium Grid
infrastructure following these steps:

1. The script/test exchanges W3C WebDriver commands to drive the browser (e.g.,
open a web page, interact with web elements, etc.) in the current session.

2. Further requests to the same browser session use the same session id. The Router
recognizes that a browser session is active by reading the Session Map.

3. The Router forwards the subsequent commands of the same session directly to
the assigned node.

Selenium Grid | 211

Figure 6-6. WebDriver commands in a Selenium Grid distributed architecture

Setting up a distributed grid
Like in the standalone and hub-nodes modes, we can use the Selenium Grid distribu‐
tion (as a fat-JAR or regular Java dependency) to start the fully distributed architec‐
ture. Example 6-8 shows the shell command required to do this using the command
line.

Example 6-8. Command to start Selenium Grid in distributed mode using the shell

C:\grid>java -jar selenium-server-4.0.0.jar event-bus
INFO [BoundZmqEventBus.<init>] - XPUB binding to [binding to tcp://*:4442,
 advertising as tcp://192.168.56.1:4442], XSUB binding to [binding to
 tcp://*:4443, advertising as tcp://192.168.56.1:4443]
...

C:\grid>java -jar selenium-server-4.0.0.jar sessions
...
INFO [SessionMapServer.execute] - Started Selenium SessionMap 4.0.0 (revision
 5fe1af712f): http://192.168.56.1:5556

C:\grid>java -jar selenium-server-4.0.0.jar sessionqueue
...
INFO [NewSessionQueueServer.execute] - Started Selenium SessionQueue 4.0.0
 (revision 5fe1af712f): http://192.168.56.1:5559

C:\grid>java -jar selenium-server-4.0.0.jar distributor --sessions
 http://<session_map>:5556 --sessionqueue http://<session_queue>:5559 --bind-bus
 false
...

212 | Chapter 6: Remote WebDriver

INFO [DistributorServer.execute] - Started Selenium Distributor 4.0.0 (revision
 5fe1af712f): http://192.168.56.1:5553

C:\grid>java -jar selenium-server-4.0.0.jar router --sessions
 http://<session_map>:5556 --distributor http://<distributor_address>:5553
 --sessionqueue http://>session_queue>:5559
...
INFO [RouterServer.execute] - Started Selenium Router 4.0.0 (revision
 5fe1af712f): http://192.168.56.1:4444

C:\grid>java -jar selenium-server-4.0.0.jar node --publish-events
 tcp://<event_bus>:4442 --subscribe-events tcp://<event_bus>:4443
...
INFO [NodeOptions.discoverDrivers] - Discovered 2 driver(s)
...
INFO [NodeServer$1.lambda$start$1] - Sending registration event...
INFO [NodeServer.lambda$createHandlers$2] - Node has been added

We start the Event Bus. By default, the Event Bus listens to TCP ports 4442 and
4443.

We start the Session Map. By default, this component listens to incoming HTTP
messages in port 5556.

We start the Session Queue. By default, this queue listens to HTTP in port 5559.

We start the Distributor. For that, we need to specify the Session Map and Session
Queue addresses. In addition, and since we already started the Event Bus inde‐
pendently, we set the flag --bind-bus to false. By default, the Distributor uses
port 5553 for the HTTP communication.

We start the Router. We need to specify the URLs of the Session Map, Session
Queue, and Distributor.

We start the Nodes. We need to specify the ports where the Event Bus listens to
publish-subscribe messages. Moreover, in this example, several drivers (chome‐
driver and geckodriver) are available in the same folder in which this command
is executed.

Observability
In software engineering, observability is a measure that determines the current state
of a software system based on its external outputs or signals. This way, observability
allows understanding the internal state of the system by leveraging its external indica‐
tors. Observability can be critical for maintaining complex software systems and

Selenium Grid | 213

determining the root cause of any issue. To that aim, the three pillars of observability
are:

Metrics
Measures of system performance over time, such as response time, transactions
per second, or memory usage, to name a few

Logs
Lines of text (typically timestamped) that a system produces when running a
piece of code

Traces
Representation of causally related distributed events (such as selected logs) that
characterize the request flow of a given operation in a software system

Selenium Grid 4 provides different features for measuring observability. First, Sele‐
nium Grid allows tracing using the OpenTelemetry API. Second, Selenium Grid pro‐
vides a GraphQL endpoint to run queries against the grid.

Tracing with OpenTelemetry
Tracing is an essential way of measuring observability based on the logs and metrics
of a software system. Selenium Grid exposes tracing in two ways. First, we can check
the log traces when executing a grid from the shell. By default, the logs at the INFO
level are displayed. We can change the level using the argument --log-level in the
shell command, for instance:

java -jar selenium-server-4.0.0.jar standalone --log-level FINE

Furthermore, Selenium Grid supports distributed tracing via OpenTelemetry APIs.
This feature allows tracing the commands flowing through a Selenium Grid infra‐
structure. Distributed tracing requires two activities in this order:

1. Code instrumentation
Selenium Grid allows exporting tracing information using the OpenTelemetry
API.

2. Data collection
For example, we can use Jaeger, an open source distributed tracing platform that
provides seamless integration with OpenTelemetry. It allows querying, visualiz‐
ing, and collecting tracing data.

214 | Chapter 6: Remote WebDriver

https://opentelemetry.io
https://www.jaegertracing.io

The following commands show how to set up Selenium Grid to export data to Jaeger.
First, we need a Jaeger backend up and running. For that, we can download the exe‐
cutable binaries for the Jaeger download page. Alternatively, we can start the server
using Docker, as follows:

docker run --rm -it --name jaeger \
 -p 16686:16686 \
 -p 14250:14250 \
 jaegertracing/all-in-one:1.27

We will use the URL http://localhost:16686 to access the Jaeger UI.

We will use the URL http://localhost:14250 to collect the data (exported by
Selenium Grid).

Then, we start Selenium Grid as follows:

java -Dotel.traces.exporter=jaeger \
 -Dotel.exporter.jaeger.endpoint=http://localhost:14250 \
 -Dotel.resource.attributes=service.name=selenium-standalone \
 -jar selenium-server-4.0.0.jar \
 --ext $(cs fetch -p \
 io.opentelemetry:opentelemetry-exporter-jaeger:1.6.0 \
 io.grpc:grpc-netty:1.41.0) \
 standalone

We use a Jaeger endpoint to export the tracing data.

We specify the service name selenium-standalone. We will look for this name in
the Jaeger UI to visualize the gathered data (see Figure 6-7).

We use Coursier to download and generate the classpath of two required depen‐
dencies (opentelemetry-exporter-jaeger and grpc-netty).

Selenium Grid | 215

https://www.jaegertracing.io/download
https://get-coursier.io

Figure 6-7. Jaeger UI showing the data gathered from Selenium Grid

GraphQL queries
GraphQL is an open source data query and manipulation language for APIs.
GraphQL defines a syntax to ask for data, generally from an online service. Selenium
Grid 4 provides a GraphQL endpoint (http://localhost:4444/graphql). A simple
way to make GraphQL queries to this endpoint is using curl from the shell. For exam‐
ple, and supposing that we have a Selenium Grid running in the localhost, we can
send the following command to the GraphQL endpoint to get the maximum and the
current number of sessions in the grid:

curl -X POST -H "Content-Type: application/json" --data \
 '{"query": "{ grid {maxSession, sessionCount } }"}' -s \
 http://localhost:4444/graphql

Configuration
You can find more details about Selenium Grid in its official documentation. For
advanced configuration, there are two ways to specify a custom setup for Selenium
Grid:

Using CLI options for the different aspects of Selenium Grid
Some examples of these options are --port to change the default port through
which the Selenium Server listens (4444 by default), or --session-timeout,
which is the timeout in which nodes are terminated when there is no activity
(three hundred seconds by default).

216 | Chapter 6: Remote WebDriver

https://graphql.org
https://curl.se
https://www.selenium.dev/documentation/grid

Using TOML files
TOML (Tom’s Obvious Minimal Language) is a configuration format designed to
be human-readable. Like the CLI options, these files allow configuring the Sele‐
nium Grid parameters but using TOML notation.

Cloud Providers
As introduced in Chapter 1, a cloud provider in the Selenium ecosystem is a company
that provides managed services (usually commercial) for automated web and mobile
testing. Common services offered by cloud providers include:

Browsers as a service
To request on-demand web browsers hosted by the providers. These browsers are
usually of different types, versions, and operating systems. This feature is typi‐
cally used for cross-browser automated or live testing.

Analysis capabilities
To monitor and debug automated tests. To that aim, cloud providers typically
support session recordings or rich error-reporting features.

Mobile testing
To request emulated (and real) mobile devices on different platforms, such as
Android and iOS.

Visual testing
Automatically inspect the UI and ensure that end users have a correct visual
experience.

Examples of current cloud providers for Selenium are Sauce Labs, BrowserStack,
LambdaTest, CrossBrowserTesting, Moon Cloud, TestingBot, Perfecto, or Testinium.
All these companies offer specific services with different pricing plans. Their com‐
mon aspect is that each cloud provider maintains a Selenium Server endpoint that we
can use in RemoteWebDriver tests. Example 6-9 illustrates how to use one of them
(concretely, Sauce Labs) to create a WebDriver object. You can find equivalent tests
for other cloud providers (BrowserStack, LambdaTest, CrossBrowserTesting, Per‐
fecto, and Testinium) in the examples repository. These tests allow using remote
browsers managed by the cloud providers.

Cloud Providers | 217

https://toml.io
https://saucelabs.com
https://www.browserstack.com
https://www.lambdatest.com
https://crossbrowsertesting.com
https://aerokube.com/moon-cloud
https://testingbot.com
https://www.perfecto.io
https://testinium.com
https://github.com/bonigarcia/selenium-webdriver-java

Example 6-9. Test setup for using Sauce Labs

@BeforeEach
void setup() throws MalformedURLException {
 String username = System.getProperty("sauceLabsUsername");
 String accessKey = System.getProperty("sauceLabsAccessKey");
 assumeThat(username).isNotEmpty();
 assumeThat(accessKey).isNotEmpty();

 MutableCapabilities capabilities = new MutableCapabilities();
 capabilities.setCapability("username", username);
 capabilities.setCapability("access_key", accessKey);
 capabilities.setCapability("name", "My SauceLabs test");
 capabilities.setCapability("browserVersion", "latest");

 ChromeOptions options = new ChromeOptions();
 options.setCapability("sauce:options", capabilities);
 URL remoteUrl = new URL(
 "https://ondemand.eu-central-1.saucelabs.com:443/wd/hub");

 driver = new RemoteWebDriver(remoteUrl, options);
}

To use Sauce Labs, we need a valid account. In other words, we need credentials
in the form of a username and access key. To avoid hardcoding these credentials
in our test logic, I use Java system properties in this test. These properties can be
informed in the execution command (e.g., mvn test -DsauceLabsUsername

=myname -DsauceLabsAccessKey=mykey). An alternative way to specify this data
is using environment variables (e.g., String username = System.getenv

("SAUCELABS_USERNAME");).

We skip this test (using assumptions) when the username or the key is
unavailable.

We need to include the username and the key as Selenium capabilities.

We can specify a custom label to identify this test in the Sauce Labs dashboard
(see Figure 6-8).

We use the latest version of a given browser (Chrome, as specified in the follow‐
ing line).

We use a custom label called sauce:options to select the required capabilities in
the Sauce Labs cloud.

218 | Chapter 6: Remote WebDriver

We use the Sauce Labs public endpoint as a remote URL. Sauce Labs provides
endpoints in different regions. In this example, I use the EU Central data center.
Other possibilities are US West, US East, or Asia-Pacific Southeast.

We use both the URL and the capabilities to create an instance of RemoteWeb
Driver.

Figure 6-8. Sauce Labs dashboard showing an automated test result

Browsers in Docker Containers
Docker is an open source platform that allows creating, deploying, and running
applications as lightweight, portable containers. The Docker platform is made up of
two main components:

• Docker Engine, an application that allows creating and running containers in a
host. Docker Engine is a client-server application composed of three elements:
— A server implemented as a daemon process (dockerd)
— A REST API used by application clients to instruct the daemon
— A CLI tool (the docker command)

• Docker Hub, a cloud service for distributing containers.

Browsers in Docker Containers | 219

https://ondemand.us-west-1.saucelabs.com/wd/hub
https://ondemand.us-east-1.saucelabs.com/wd/hub
https://ondemand.apac-southeast-1.saucelabs.com
https://www.docker.com
https://docs.docker.com/engine
https://hub.docker.com

In Selenium, Docker can be a relevant technology to support the browser infrastruc‐
ture required for automated tests based on Selenium WebDriver. The following sub‐
sections explain the alternatives for executing browsers in Docker containers.

Docker Images for Selenium Grid
An official subproject of the Selenium suite is docker-selenium. This project main‐
tains Docker images for the different Selenium Grid components (i.e., standalone,
hub, nodes, router, distributor, session queue, etc.) and web browsers (Chrome, Fire‐
fox, and Edge). These Docker images are open source and released on Docker Hub. A
simple way to use these images is to start them using the shell (with the docker com‐
mand) and use an instance of RemoteWebDriver to drive dockerized browsers. The
following subsections explain how.

The commands and tests presented in this section suppose Docker
is available in your system. In other words, you need to have
installed a Docker Engine in your machine to execute these exam‐
ples properly.

Standalone
We can find Selenium images for standalone browsers (Chrome, Firefox, and Edge)
in Docker Hub. The following command shows how to start Chrome in Docker using
the shell.

docker run -d -p 4444:4444 --shm-size="2g" selenium/standalone-chrome:latest

This command starts the Docker image selenium/standalone-chrome:latest, i.e.,
the latest version of Chrome available in Docker Hub. Alternatively, we can use a
fixed Chrome version (e.g., selenium/standalone-chrome:94.0). The Docker con‐
tainer is started in detached mode (using the -d flag) using a shared memory of 2 GB
(--shm-size="2g"). This figure is a value known to work well, although you can
change it depending on your resources or specific needs. Finally, the internal con‐
tainer port 4444 is mapped to the same port of the host where the command is exe‐
cuted (-p 4444:4444). We can then use the following Java command to instantiate a
WebDriver object that uses this dockerized Chrome:

WebDriver driver = new RemoteWebDriver("http://localhost:4444/",
 new ChromeOptions());

220 | Chapter 6: Remote WebDriver

https://github.com/SeleniumHQ/docker-selenium
https://hub.docker.com/u/selenium

Moreover, when using Selenium Grid, we can use Docker containers for registering
nodes. The following command shows how to start a Selenium Grid in standalone
mode using a node with Firefox in Docker:

java -jar selenium-server-4.0.0.jar node -D selenium/standalone-firefox:latest
 '{"browserName": “firefox"}'

Hub-nodes
We can easily start Selenium Grid in the hub-nodes mode using the official Selenium
Docker images. The following commands show how to do it in the shell.

docker network create grid

docker run -d -p 4442-4444:4442-4444 --net grid \
 --name selenium-hub selenium/hub:4.0.0

docker run -d --net grid -e SE_EVENT_BUS_HOST=selenium-hub --shm-size="2g" \
 -e SE_EVENT_BUS_PUBLISH_PORT=4442 -e SE_EVENT_BUS_SUBSCRIBE_PORT=4443 \
 selenium/node-chrome:4.0.0

docker network rm grid

First, we create a Docker network called grid. This network allows communica‐
tion between hub and node(s) using their hostnames (e.g., selenium-hub).

We start the Selenium Hub. We need to map ports 4444 (for the Selenium Server
URL) and 4442-4443 (for registering nodes).

We register nodes. In this command, we use Chrome (selenium/node-chrome).
Other browsers can be registered in the hub using other Docker images (e.g.,
selenium/node-firefox or selenium/node-edge).

If not required anymore, we can remove the grid network at the end.

Further features

The project docker-selenium provides a wide variety of features. I recommend you
take a look at its README for more details. Here is a summary of these features:

Docker Compose scripts
These scripts allow starting Selenium Grid hub-nodes and the fully distributed
mode effortlessly.

Video recording
We can record the desktop session of the browsers in the nodes using another
Docker container.

Browsers in Docker Containers | 221

https://github.com/SeleniumHQ/docker-selenium

Dynamic grid
This allows us to start Docker containers on demand.

Deploying to Kubernetes
Kubernetes is an open source container-orchestration system that automates the
deployment and management of containerized applications. We can use Kuber‐
netes to deploy the Selenium Docker containers.

Advanced container configuration
This can be used, for instance, to specify Selenium or Java custom configuration.

Access to the remote session
This can be achieved using Virtual Network Computing (VNC) (a graphical
desktop sharing system) and noVNC (an open source web-based VNC client).

Selenoid
Selenoid is an open source Golang implementation of a Selenium Hub. Selenoid can
be seen as a lightweight Selenium Server that provides a browser infrastructure based
on Docker. The Selenoid team also maintains the Docker images used by Selenoid.
These images include multiple web browsers and Android devices, such as Chrome,
Firefox, Edge, Opera, Safari (WebKit engine), or Chrome Mobile.

There are different ways to use Selenoid and its Docker images. A straightforward
way is to use the configuration manager (a binary called cm) provided by the project.
The following snippet shows how to start Selenoid and its UI (a web-based dashboard
to monitor Selenoid):

./cm selenoid start

./cm selenoid-ui start

We start Selenoid. The configuration manager downloads the Docker image for
Selenoid and the two latest versions of several browsers (Chrome, Firefox, and
Opera). Once it is started, Selenoid listens to Selenium WebDriver requests in the
URL http://localhost:4444/wd/hub.

Optionally, we can start the Selenoid UI. This UI is a web application accessible
in the URL http://localhost:8080/. Figure 6-9 shows a screenshot of this UI
during the execution of a Selenium WebDriver test. Example 6-10 shows the
setup of a test that uses a Chrome browser served by Selenoid.

222 | Chapter 6: Remote WebDriver

https://kubernetes.io
https://novnc.com
https://aerokube.com/selenoid

Figure 6-9. Selenoid UI during a test execution using VNC

Example 6-10. Instantiation of a RemoteWebDriver object using the constructor

@BeforeEach
void setup() throws MalformedURLException {
 URL seleniumServerUrl = new URL("http://localhost:4444/wd/hub");
 assumeThat(isOnline(seleniumServerUrl)).isTrue();

 ChromeOptions options = new ChromeOptions();
 Map<String, Object> selenoidOptions = new HashMap<>();
 selenoidOptions.put("enableVNC", true);
 options.setCapability("selenoid:options", selenoidOptions);
 driver = new RemoteWebDriver(seleniumServerUrl, options);
}

The capability enableVNC is Selenoid-specific and allows us to start the docker‐
ized browser with VNC support (this way, we can visualize the browser session in
the Selenoid UI, as illustrated in Figure 6-9).

Since this capability is vendor-specific, the W3C WebDriver-compatible way to
set this capability is using a custom namespace (selenoid:options in this case).

Further features
Selenoid provides different features and configuration capabilities. You can check its
documentation for more details. These features include video recording, custom con‐
figuration, log management, or access to browser developer tools, to name a few.

Browsers in Docker Containers | 223

https://aerokube.com/selenoid/latest

WebDriverManager
As of version 5, WebDriverManager allows the effortless use of web browsers in
Docker containers. To that aim, each manager (e.g., chromedriver(), firefox
driver(), etc.) provides the method browserInDocker(). WebDriverManager inter‐
nally pulls the Docker images and runs the container, creating a RemoteWebDriver
instance when invoking the method create(). WebDriverManager uses the Docker
images maintained by the Selenoid team. This way, you can use Chrome (desktop and
mobile), Firefox, Edge, Opera, and Safari as Docker containers out of the box through
WebDriverManager. Example 6-11 illustrates a basic test using this feature.

Example 6-11. Complete test using WebDriverManager and Chrome in Docker

class DockerChromeJupiterTest {

 WebDriver driver;

 WebDriverManager wdm = WebDriverManager.chromedriver().browserInDocker();

 @BeforeEach
 void setupTest() {
 assumeThat(isDockerAvailable()).isTrue();
 driver = wdm.create();
 }

 @AfterEach
 void teardown() {
 wdm.quit();
 }

 @Test
 void testDockerChrome() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getTitle()).contains("Selenium WebDriver");
 }

}

We get an instance of the manager for Chrome (chromedriver()). Then, using
the WebDriverManager fluent API, we specify that the future WebDriver objects
created with this instance (called wmd) will use Docker to execute the correspond‐
ing browser (Chrome, in this case).

We assume a Docker engine is available in the machine running this test. For
that, we create an AssertJ assumption by invoking the static method isDocker
Available on WebDriverManager. This way, when Docker is not available, the
test is skipped.

224 | Chapter 6: Remote WebDriver

In the test setup, we create the WebDriver instance. Internally, WebDriverMan‐
ager will connect to Docker Hub to discover the latest version of Chrome avail‐
able as a Docker image. This image is pulled to the local machine, the Docker
container is executed, and the corresponding RemoteWebDriver instance is
returned to the test logic.

WebDriverManager allows quitting the previously created WebDriver instances
through the method quit(). This method has the same effect of directly quitting
the instance (driver.quit() in this case), and the used Docker containers are
gracefully terminated.

WebDriverManager provides a fluent API to configure different aspects of the dock‐
erized web browsers. The following snippet shows several possibilities. As usual, you
can find the complete tests using these features in the examples repository for this
book.

WebDriverManager wdm = WebDriverManager.firefoxdriver().browserInDocker();

WebDriverManager wdm = WebDriverManager.chromedriver().browserInDocker()
 .browserVersion("beta");

WebDriverManager wdm = WebDriverManager.chromedriver().browserInDocker()
 .enableVnc();

WebDriverManager wdm = WebDriverManager.chromedriver().browserInDocker()
 .enableRecording();

We select a given manager to use the corresponding dockerized browser (Firefox
in this case). In addition to Chrome and Firefox, the other alternatives are Edge,
Opera, Safari, and Chrome Mobile.

By default, WebDriverManager uses the latest version available in Docker Hub
for the dockerized browser. Nevertheless, we can force the use of a given version
(e.g., 94.0). Moreover, different wildcards are valid for specifying the following
versions, namely:

latest

To use the latest version (default option).

latest-N

To use a previous version to the stable release. For example, if we specify
latest-1 (i.e., latest version minus one), the former version to the stable
release is used.

Browsers in Docker Containers | 225

https://github.com/bonigarcia/selenium-webdriver-java
https://github.com/bonigarcia/selenium-webdriver-java

beta

To use the beta version. This version is only available for Chrome and Fire‐
fox, using a fork of the Aerokube Docker images for these browsers main‐
tained by Twilio.

dev

To use the development version (again, for Chrome and Firefox).

Connect to the remote desktop session using VNC or noVNC. By default, Web‐
DriverManager prints the noVNC URL in the log traces. In addition, this URL is
accessible by invoking the method wdm.getDockerNoVncUrl(). Figure 6-10
shows a web browser that allows watching and interacting with a remote session
with noVNC.

To enable the session recording. At the end of the test, you can find the recording
(in MP4 format) in the project root folder.

Figure 6-10. Remote desktop using noVNC of a dockerized browser started with
WebDriverManager

Further features
As explained in its documentation, you can configure WebDriverManager in multiple
ways. For instance, you can specify fine-grained aspects of dockerized browsers, such
as the time zone, network, shared memory, volumes, environment variables, screen
resolution, or recording output, among others. In addition, WebDriverManager can

226 | Chapter 6: Remote WebDriver

https://hub.docker.com/r/twilio/selenoid
https://bonigarcia.dev/webdrivermanager

be used as a Selenium Server. This server uses the container images pulled from
Docker Hub to support the browser infrastructure.

Selenium-Jupiter
Selenium-Jupiter internally uses WebDriverManager to manage and handle web
browsers in Docker containers. For dockerized browsers, Selenium-Jupiter provides
the annotation @DockerBrowser. You can use this annotation with WebDriver or
RemoteWebDriver parameters in test methods. Example 6-12 demonstrates this fea‐
ture. In this example, we use Chrome in Docker.

Example 6-12. Complete test using Selenium-Jupiter and Chrome in Docker

@EnabledIfDockerAvailable
@ExtendWith(SeleniumJupiter.class)
class DockerChromeSelJupTest {

 @Test
 void testDockerChrome(@DockerBrowser(type = CHROME) WebDriver driver) {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getTitle()).contains("Selenium WebDriver");
 }

}

We decorate the test class with the Selenium-Jupiter annotation @EnabledIf
DockerAvailable. This annotation disables the test when Docker is not installed
in the machine running the test.

The annotation @DockerBrowser allows setting different aspects and features. The fol‐
lowing snippet illustrates some of them.

@DockerBrowser(type = FIREFOX)

@DockerBrowser(type = CHROME, version = "beta")

@DockerBrowser(type = CHROME, vnc = true)

@DockerBrowser(type = CHROME, recording = true)

We can change the browser using the type attribute. The accepted values are
CHROME, FIREFOX, OPERA, EDGE, SAFARI, and CHROME_MOBILE.

We can change the browser version using the attribute version. Like WebDriver‐
Manager, Selenium-Jupiter allows specifying a fixed version value (e.g., 94.0) and
using the wildcards latest and latest-N, as well as beta and dev for Chrome
and Firefox.

Browsers in Docker Containers | 227

We enable access to the remote desktop session through VNC and noVNC using
the attribute vnc.

We enable the session recording with the recording attribute.

You can find more details, examples, and configuration capabilities of Selenium-
Jupiter in its documentation.

Summary and Outlook
Selenium WebDriver allows controlling remote web browsers. This feature is feasible
because the underlying communication protocol (W3C WebDriver) is based on
JSON messages over HTTP. This way, the components of the Selenium WebDriver
architecture (Selenium Server, nodes, or client script) can be distributed (i.e., exe‐
cuted in different hosts). To use this feature in Java, we need to create an instance of
RemoteWebDriver, typically passing two arguments: the Selenium Server URL and the
required capabilities. We can start a Selenium Server infrastructure using Selenium
Grid (in standalone, hub-nodes, or fully distributed mode). Alternatively, we can use
the managed services provided by a cloud provider (such as Sauce Labs, Browser‐
Stack, LambdaTest, or CrossBrowserTesting, among others). Finally, we can use
Docker to support a containerized infrastructure of web browsers.

This chapter concludes the second part of the book, in which you have discovered the
main features of the Selenium WebDriver API. The next part of the book covers dif‐
ferent aspects of developing end-to-end tests using the Selenium WebDriver API,
starting with the Page Object Model (POM), a widely used design pattern for enhanc‐
ing test maintenance and reducing code duplication in Selenium WebDriver.

228 | Chapter 6: Remote WebDriver

https://bonigarcia.dev/selenium-jupiter

PART III

Advanced Concepts

This last part covers different aspects and use cases built on top of the Selenium Web‐
Driver API. First, you will learn about the Page Object Model (POM), a widely used
design pattern that allows the development of reusable and maintainable WebDriver
tests. The following chapter explains different techniques for robust cross-browser
testing, such as parameterized tests, test order, or parallel text execution. The next
chapter describes how to use third-party libraries and frameworks in conjunction
with Selenium WebDriver, such as Cucumber or the Spring Framework, among oth‐
ers. The final chapter summarizes various libraries complementary to Selenium Web‐
Driver, such as Appium or REST Assured. To conclude, you will discover the main
features of the current alternatives of Selenium, such as Cypress, WebDriverIO, Test‐
Cafe, Puppeteer, and Playwright.

CHAPTER 7

The Page Object Model (POM)

A design pattern is a reusable solution to a recurring problem in software engineering.
This chapter presents the Page Object Model (POM), a popular design pattern used
to develop Selenium WebDriver tests. The use of POM has different benefits, such as
improving reusability and avoiding code duplication. POM is based on creating page
classes for modeling the SUT UI in a single repository, which is later used from the
test logic.

Motivation
Some of the biggest challenges of developing end-to-end tests with Selenium Web‐
Driver are maintainability and flakiness. Regarding the former, the problem might
happen during the development or evolution of the SUT. The changes made in the UI
can cause existing end-to-end tests to break. The maintenance costs for fixing these
tests can be relevant when having a large test suite in which code duplication exists in
several tests cases (e.g., when the same locators are used repeatedly in different tests).

Concerning flakiness (i.e., lack of reliability), a test is flaky when it has inconsistent
behavior, i.e., it both passes and fails periodically under the same conditions (test
logic, input data, setup, etc.). There are two major causes of test flakiness in Selenium
WebDriver tests. First, the root of the problem might be the SUT. For instance, a bug
in the server-side logic (e.g., a race condition) can expose erratic behavior in end-to-
end tests. In this case, developers and testers should work together to detect and solve
the problem, typically fixing server-side bugs. Second, the cause could be in the test
itself. This is an undesirable situation that testers should avoid. There are different
strategies to prevent flakiness in Selenium WebDriver tests, such as implementing a
robust locator strategy (to avoid brittle tests due to responsiveness or viewport
changes) or using a waiting strategy (to handle the distributed and asynchronous
nature of web applications, as explained in “Waiting Strategies” on page 94).

231

Utilizing a design pattern like POM can help reduce code duplication and enhance
maintainability issues. Moreover, we can use POM for including reusable robust
locating and waiting strategies. The following section describes how to carry out the
POM design pattern.

The POM design pattern itself is not strictly a solution for test flak‐
iness. However, as explained in the following sections, it enables
the encapsulation of reusable code that prevents test unreliability.

The POM Design Pattern
The principle of the POM design pattern is to separate the logic for handling UI ele‐
ments in separate classes (called page classes) from the test logic. In other words, we
model the appearance and behavior of our SUT following an object-oriented para‐
digm, i.e., as page objects. Then, these page objects are used by Selenium WebDriver
tests.

Let’s look at a simple example to illustrate POM. Consider Figure 7-1, which contains
a login form. As usual, this page is contained on the practice site. Example 7-1 shows
a test case using vanilla Selenium WebDriver. In programming, we use the term
“vanilla” to refer to technology used without customization from the original form. In
this case, we use the standard Selenium WebDriver API, explained in Part II of this
book.

Figure 7-1. Practice web page with a login form

232 | Chapter 7: The Page Object Model (POM)

Example 7-1. Test using vanilla Selenium WebDriver to implement a successful login

@Test
void testVanillaBasicLogin() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/login-form.html");

 driver.findElement(By.id("username")).sendKeys("user");
 driver.findElement(By.id("password")).sendKeys("user");
 driver.findElement(By.cssSelector("button")).click();

 assertThat(driver.findElement(By.id("success")).isDisplayed()).isTrue();
}

We type the word user as username in the web form.

We type the same word as password in the web form.

We click on the Submit button.

We verify the success box is displayed.

This test is perfectly correct, but a potential problem might occur if we implement
additional tests using the same web page. For instance, Example 7-2 shows another
test case using vanilla Selenium WebDriver to implement a negative test (a failed
login) using the same web form. This test is again sound, but together with
Example 7-1, we duplicate most of the logic for locating web elements, only using dif‐
ferent input data and the expected outcome. This way of proceeding violates one of
the most relevant principles in software design: Don’t Repeat Yourself (DRY). This is
problematic since using the same code in different places makes maintainability
harder.

Example 7-2. Test using vanilla Selenium WebDriver to implement a failed login

@Test
void testVanillaBasicLoginFailure() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/login-form.html");

 driver.findElement(By.id("username")).sendKeys("bad-user");
 driver.findElement(By.id("password")).sendKeys("bad-password");
 driver.findElement(By.cssSelector("button")).click();

 assertThat(driver.findElement(By.id("invalid")).isDisplayed()).isTrue();
}

The POM Design Pattern | 233

Page Objects
Page object classes enable the separation of the code devoted to the UI, such as loca‐
tors and page layout, from the test logic. We can see page classes as a single repository
that encapsulates the operations or services provided by the application under test.
These classes are instantiated as page objects in different test cases. We can implement
end-to-end tests using the method exposed in these objects while avoiding code
repetition.

Here is a basic example using page objects. In the following example, we refactor the
test explained in the previous section (i.e., using the login form) using a page object
instead of vanilla Selenium WebDriver. The first step is to create a Java class that
models the login page. Example 7-3 shows a very basic implementation of this page
class.

Example 7-3. Basic page class to model the practice login form

public class BasicLoginPage {

 WebDriver driver;

 By usernameInput = By.id("username");
 By passwordInput = By.id("password");
 By submitButton = By.cssSelector("button");
 By successBox = By.id("success");

 public BasicLoginPage(WebDriver driver) {
 this.driver = driver;

 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/login-form.html");
 }

 public void with(String username, String password) {
 driver.findElement(usernameInput).sendKeys(username);
 driver.findElement(passwordInput).sendKeys(password);
 driver.findElement(submitButton).click();
 }

 public boolean successBoxPresent() {
 return driver.findElement(successBox).isDisplayed();
 }

}

We declare a WebDriver class attribute. This variable is used in the page object to
implement the interaction with the web page.

234 | Chapter 7: The Page Object Model (POM)

We declare all the required locators as additional attributes. In this case, we locate
the text input for the username and password, the Submit button, and the success
box.

The constructor defined by this page class accepts the WebDriver object. We use
the constructor to load the page under test.

We declare a method to model the required interaction to log in, i.e., type the
username and password, and click on the Submit button.

We declare another method to check if the success box is visible.

Now, we can use this page class in a test case. Example 7-4 illustrates how. Notice that
we create a WebDriver instance, as usual before each test, and quit it after each test.
We use this driver as an argument in the page class constructor.

Example 7-4. Test using the basic page class to implement a succesful login

class BasicLoginJupiterTest {

 WebDriver driver;
 BasicLoginPage login;

 @BeforeEach
 void setup() {
 driver = WebDriverManager.chromedriver().create();
 login = new BasicLoginPage(driver);
 }

 @AfterEach
 void teardown() {
 driver.quit();
 }

 @Test
 void testBasicLoginSuccess() {
 login.with("user", "user");
 assertThat(login.successBoxPresent()).isTrue();
 }

}

We declare the page class as an attribute in the test class.

We create the page object, passing the WebDriver instance.

The POM Design Pattern | 235

We invoke the method with defined by the page class to make the login
operation.

We verify the success box is available on the resulting web page using a method
provided by the page object.

This approach is a handy start for improving the maintainability of our tests because
now, all the logic related to the login web page is centralized as a reusable class. Nev‐
ertheless, the code in the page classes is still brittle. For instance, imagine we need to
implement a negative test for the login page, i.e., a login attempt using incorrect cre‐
dentials. Example 7-5 seems a reasonable way to do that, given the current implemen‐
tation of the page class. However, if you run this test, you will discover that the test
fails due to a NoSuchElementException exception. The next section explains how to
solve this potential problem by creating more robust page objects.

Example 7-5. Test using the basic page class to implement a failed login

@Test
void testBasicLoginFailure() {
 login.with("bad-user", "bad-password");
 assertThat(login.successBoxPresent()).isFalse();
}

Robust Page Objects
The example presented in the previous sections improves code maintainability since
the page operations are encapsulated in a single class instead of having them scattered
throughout the test suite. That said, there are different ways to enhance the previous
page classes implementation. First of all, our SUT is likely to have several web pages,
not only one. For this reason, a common strategy is to follow an object-oriented
approach and create a base page class that encapsulates the common logic for all the
page classes. Example 7-6 shows a Java class implementing a typical base for page
classes.

Example 7-6. Example of a base class for page classes

public class BasePage {

 static final Logger log = getLogger(lookup().lookupClass());

 WebDriver driver;
 WebDriverWait wait;
 int timeoutSec = 5; // wait timeout (5 seconds by default)

 public BasePage(WebDriver driver) {
 this.driver = driver;

236 | Chapter 7: The Page Object Model (POM)

 wait = new WebDriverWait(driver, Duration.ofSeconds(timeoutSec));
 }

 public void setTimeoutSec(int timeoutSec) {
 this.timeoutSec = timeoutSec;
 }

 public void visit(String url) {
 driver.get(url);
 }

 public WebElement find(By element) {
 return driver.findElement(element);
 }

 public void click(By element) {
 find(element).click();
 }

 public void type(By element, String text) {
 find(element).sendKeys(text);
 }

 public boolean isDisplayed(By locator) {
 try {
 wait.until(ExpectedConditions.visibilityOfElementLocated(locator));
 } catch (TimeoutException e) {
 log.warn("Timeout of {} wait for {}", timeoutSec, locator);
 return false;
 }
 return true;
 }

}

We define an explicit wait (WebDriverWait) attribute in the base class. We instan‐
tiate this attribute in the constructor using a default timeout value (five seconds
in this example).

We create a setter method to change the default value for the wait timeout. For
instance, we might need to adjust this timeout depending on the system response
time.

We create several common methods that page classes can reuse, such as visit()
(to open a web page), find() (to locate a web element), or type() (to send data
to a writable element, such as an input field).

The POM Design Pattern | 237

We implement a method to check if a web element is displayed or not. Notice
that this method hides the complexity of waiting for this element, returning a
simple boolean value that tests can use.

We use the previous base class as the parent of specific page classes. For instance,
Example 7-7 shows a Java class that extends this base to implement the page class,
using the login sample page in the practice site.

Example 7-7. Login page class using the previous base

public class LoginPage extends BasePage {

 By usernameInput = By.id("username");
 By passwordInput = By.id("password");
 By submitButton = By.cssSelector("button");
 By successBox = By.id("success");

 public LoginPage(WebDriver driver, int timeoutSec) {
 this(driver);
 setTimeoutSec(timeoutSec);
 }

 public LoginPage(WebDriver driver) {
 super(driver);
 visit("https://bonigarcia.dev/selenium-webdriver-java/login-form.html");
 }

 public void with(String username, String password) {
 type(usernameInput, username);
 type(passwordInput, password);
 click(submitButton);
 }

 public boolean successBoxPresent() {
 return isDisplayed(successBox);
 }

}

We define the page locators as class attributes.

We define a constructor with two parameters: the WebDriver object and the time‐
out value (in seconds).

We define another constructor that opens the web page under test.

We include a method to log in using username and password as credentials. This
uses the methods defined in the parent (type() and click()).

238 | Chapter 7: The Page Object Model (POM)

We include another method to check if the success box is visible or not (using the
method isDisplayed() defined in the base class).

Finally, we can use the page class to implement a Selenium WebDriver test.
Example 7-8 shows a test using JUnit 5 (as usual, you can find the JUnit 4, TestNG,
and Selenium-Jupiter flavors in the examples repository).

Example 7-8. Test using the page class to implement a successful and failed login

class LoginJupiterTest {

 WebDriver driver;
 LoginPage login;

 @BeforeEach
 void setup() {
 driver = WebDriverManager.chromedriver().create();
 login = new LoginPage(driver);
 }

 @AfterEach
 void teardown() {
 driver.quit();
 }

 @Test
 void testLoginSuccess() {
 login.with("user", "user");
 assertThat(login.successBoxPresent()).isTrue();
 }

 @Test
 void testLoginFailure() {
 login.with("bad-user", "bad-password");
 assertThat(login.successBoxPresent()).isFalse();
 }

}

We instantiate the page object before each test.

Since the page class logic is robust, we can invoke successBoxPresent() to
implement a negative test. This method internally implements an explicit wait for
the web element, which eventually returns false when the success box is not
displayed.

The POM Design Pattern | 239

https://github.com/bonigarcia/selenium-webdriver-java

Creating a Domain Specific Language (DSL)
We can push things a little more in our journey of modeling our SUT and create a
complete Domain Specific Language (DSL) using the page classes. In computing, a
DSL is a specialized language for a particular domain. When using the POM and
Selenium WebDriver, we can see a DSL as the encapsulation of all the SUT operations
and services in the methods provided by the page classes. This way, test cases use a
simple, readable API provided by the page classes. These classes encapsulate all the
calls to the Selenium WebDriver API to interact with the SUT.

Continuing with the example shown in the previous sections, Example 7-9 shows a
base page class for the login page following a DSL approach. This base class is quite
similar to Example 7-6, but in this case, this class also encapsulates the required logic
to create a WebDriver instance.

Example 7-9. Example of base class following a DSL approach

public class ExtendedBasePage {

 static final Logger log = getLogger(lookup().lookupClass());

 WebDriver driver;
 WebDriverWait wait;
 int timeoutSec = 5; // wait timeout (5 seconds by default)

 public ExtendedBasePage(String browser) {
 driver = WebDriverManager.getInstance(browser).create();
 wait = new WebDriverWait(driver, Duration.ofSeconds(timeoutSec));
 }

 public void setTimeoutSec(int timeoutSec) {
 this.timeoutSec = timeoutSec;
 }

 public void quit() {
 if (driver != null) {
 driver.quit();
 }
 }

 // Rest of common methods: quit(), visit(URL url), find(By element), etc.

}

We declare a String parameter in the base constructor. This string will be the
browser name (specified in the tests).

240 | Chapter 7: The Page Object Model (POM)

We use WebDriverManager to resolve the required driver and create the Web
Driver instance. As explained in “Generic Manager” on page 353, WebDriver‐
Manager allows the use of a parameterized manager by invoking the method
getInstance(). In this case, we use the browser name (e.g., chrome, firefox,
etc.) to select the manager.

We also encapsulate the method to terminate the session and close the browser.

Example 7-10 shows the page class that extends this base. As you can see, the only
difference from Example 7-7 is that this page class uses a string parameter (the
browser name) in the constructor.

Example 7-10. Login page class following a DSL approach

public class ExtendedLoginPage extends ExtendedBasePage {

 By usernameInput = By.id("username");
 By passwordInput = By.id("password");
 By submitButton = By.cssSelector("button");
 By successBox = By.id("success");

 public ExtendedLoginPage(String browser, int timeoutSec) {
 this(browser);
 setTimeoutSec(timeoutSec);
 }

 public ExtendedLoginPage(String browser) {
 super(browser);
 visit("https://bonigarcia.dev/selenium-webdriver-java/login-form.html");
 }

 public void with(String username, String password) {
 type(usernameInput, username);
 type(passwordInput, password);
 click(submitButton);
 }

 public boolean successBoxPresent() {
 return isDisplayed(successBox);
 }

}

Finally, Example 7-11 shows the resulting test. Notice that this test does not contain
any single call to Selenium WebDriver or WebDriverManager. The page class encap‐
sulates all the low-level details of the interaction with the browser, exposing a high-
level, readable API used in the test.

Creating a Domain Specific Language (DSL) | 241

Example 7-11. Test case using POM and following a DSL approach

class ExtendedLoginJupiterTest {

 ExtendedLoginPage login;

 @BeforeEach
 void setup() {
 login = new ExtendedLoginPage("chrome");
 }

 @AfterEach
 void teardown() {
 login.quit();
 }

 @Test
 void testLoginSuccess() {
 login.with("user", "user");
 assertThat(login.successBoxPresent()).isTrue();
 }

 @Test
 void testLoginFailure() {
 login.with("bad-user", "bad-password");
 assertThat(login.successBoxPresent()).isFalse();
 }

}

We instantiate the page object, simply specifying the browser type to be used
(chrome in this case).

As usual, we terminate the browser session after each test, but this time using a
method provided by the page object.

Page Factory
Page Factory is the name given to several support classes provided by the Selenium
WebDriver API to ease the implementation of page object classes. The most relevant
of these support classes are:

FindBy

Annotation used at the attribute level to identify web elements in a page.

FindAll

Annotation that allows composing different @FindBy locators.

242 | Chapter 7: The Page Object Model (POM)

PageFactory

Class used to initialize all the previously declared web elements with @FindBy
(and @FindAll).

CacheLookup

One downside of using the @FindBy annotation to locate web elements is that as
each locator is used, the driver will try to find it on the current page. This feature
is helpful in dynamic web applications. However, it would be desirable to cache
the web elements in static web applications. For this reason, the annotation
@CacheLookup allows caching the web elements once they are located, improving
the performance of the resulting tests.

Example 7-12 shows a page class that uses these Selenium WebDriver support classes.
You can find the resulting test using this page class in the repository object. This test
is equivalent to Example 7-11, but uses FactoryLoginPage instead of ExtendedLogin
Page for interaction with the login page.

Example 7-12. Class using the Page Factory provided by Selenium WebDriver

public class FactoryLoginPage extends ExtendedBasePage {

 @FindBy(id = "username")
 @CacheLookup
 WebElement usernameInput;

 @FindBy(id = "password")
 @CacheLookup
 WebElement passwordInput;

 @FindBy(css = "button")
 @CacheLookup
 WebElement submitButton;

 @FindBy(id = "success")
 @CacheLookup
 WebElement successBox;

 public FactoryLoginPage(String browser, int timeoutSec) {
 this(browser);
 setTimeoutSec(timeoutSec);
 }

 public FactoryLoginPage(String browser) {
 super(browser);
 PageFactory.initElements(driver, this);
 visit("https://bonigarcia.dev/selenium-webdriver-java/login-form.html");
 }

Page Factory | 243

 // Same logic to the page class without using the page factory

}

We declare the web elements in the page using the WebElement type decorated
with two annotations:

@FindBy

To specify the locator (by id and css in this example).

@CacheLookup

To cache the web element location results (since the web page is static and its
content will not change in different calls).

We invoke the initElements method to locate the web elements using the Web
Driver instance.

The Page Factory approach is only recommended when the web
page tested with Selenium WebDriver is static. This approach can
lead to undesirable effects such as stale web elements (i.e., old or
no-longer-available elements) when using dynamic web pages.

Summary and Outlook
This chapter provided a comprehensive overview of the Page Object Model (POM) in
Selenium WebDriver tests. POM is a design pattern in which we separate the logic to
interact with web pages and the test code. This way, page classes contain the logic
related to web locators and page layout, and test classes determine how to exercise
and verify the SUT. The POM pattern improves the maintainability of test suites
based on Selenium WebDriver since the page classes are stored in a single repository
that models the SUT. This repository is used later in different test cases. We can create
robust web pages using proper location and waiting strategies.

The next chapter presents specific aspects of the used unit testing frameworks (JUnit,
TestNG, and Selenium-Jupiter) to improve the overall testing process with Selenium
WebDriver. These features allow creating parameterized tests (for cross-browser test‐
ing), categorizing tests (for test filtering), ordering and retrying tests, or executing
tests in parallel.

244 | Chapter 7: The Page Object Model (POM)

CHAPTER 8

Testing Framework Specifics

In the examples presented throughout this book, I have recommended embedding
the calls to the Selenium WebDriver API in Java methods decorated with the annota‐
tion @Test using different unit testing frameworks: JUnit 4, JUnit 5 (alone or exten‐
ded with Selenium-Jupiter), or TestNG. When executing regular tests, the difference
in using one or another testing framework is minimal. Nevertheless, each testing
framework has specific features for different use cases. This chapter summarizes
some of these features to implement Selenium WebDriver tests. As usual, you can
find the source code for this chapter in the examples repository for this book. You can
use these examples to compare and choose the most convenient unit testing frame‐
work for your specific needs.

Parameterized Tests
A widespread feature commonly supported by unit testing frameworks is creating
parameterized tests. This feature enables the execution of tests multiple times using
different parameters. Although we can implement parameterized tests both
with JUnit (4 and 5) and TestNG, there are significant differences among each
implementation.

JUnit 4
We need to use a test runner called Parameterized for implementing parameterized
tests in JUnit 4. A test runner in JUnit 4 is a Java class responsible for running tests.
We decorate a Java class using the JUnit 4 annotation @RunWith to specify a test run‐
ner. Then, we need to use the JUnit 4 annotation @Parameters to decorate the
method that provides the test parameters. There are two ways to inject these parame‐
ters into the test class: in the test class constructor or as class attributes decorated

245

with the annotation @Parameter. Example 8-1 shows a test case where the test param‐
eters are injected using the second technique. This example executes the same test for
login into the practice site using different credentials (username and password). As a
result, the message provided by the web page is different (login successful or invalid
credentials).

Example 8-1. Parameterized test using JUnit 4

@RunWith(Parameterized.class)
public class ParameterizedJUnit4Test {

 WebDriver driver;

 @Parameter(0)
 public String username;

 @Parameter(1)
 public String password;

 @Parameter(2)
 public String expectedText;

 @Before
 public void setup() {
 driver = WebDriverManager.chromedriver().create();
 }

 @After
 public void teardown() {
 driver.quit();
 }

 @Parameters(name = "{index}: username={0} password={1} expectedText={2}")
 public static Collection<Object[]> data() {
 return Arrays
 .asList(new Object[][] { { "user", "user", "Login successful" },
 { "bad-user", "bad-passwd", "Invalid credentials" } });
 }

 @Test
 public void testParameterized() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/login-form.html");

 driver.findElement(By.id("username")).sendKeys(username);
 driver.findElement(By.id("password")).sendKeys(password);
 driver.findElement(By.cssSelector("button")).click();

 String bodyText = driver.findElement(By.tagName("body")).getText();
 assertThat(bodyText).contains(expectedText);

246 | Chapter 8: Testing Framework Specifics

 }

}

We specify the Parameterized test runner for this Java class.

We inject three test parameters as class attributes: username (index 0), password
(index 1), and expected text (index 2).

We specify the test parameter in a method that returns a collection of generic
parameters (Collection<Object[]>).

We return a collection of the three String sets to be used as a test parameter. The
values of each entry will be injected using the previously declared three parame‐
ters (username, password, and expected text).

In the test logic (that will be executed twice, once per data entry), we try to log in
to the practice site using the username and password provided as parameters.

We assert the expected data (which is different depending on the credentials pro‐
vided as a parameter) is available in the page body.

One of the most significant limitations of JUnit 4 is that we can use
only one test runner per Java class. In other words, test runners are
not composable in JUnit 4. To overcome this restriction (among
others), the JUnit team released JUnit 5 in 2017.

TestNG
We can use the annotation @DataProvider to decorate the method that provides the
test parameters in a parameterized TestNG test. As you can see in Example 8-2, this
method returns a double array of general Java objects. The annotation @Data
Provider should provide a name as an attribute. This name is later used in the @Test
method to specify the data provider. Finally, the parameters are injected into the test
method.

Example 8-2. Parameterized test using TestNG

public class ParameterizedNGTest {

 WebDriver driver;

 @BeforeMethod
 public void setup() {

Parameterized Tests | 247

 driver = WebDriverManager.chromedriver().create();
 }

 @AfterMethod
 public void teardown() {
 driver.quit();
 }

 @DataProvider(name = "loginData")
 public static Object[][] data() {
 return new Object[][] { { "user", "user", "Login successful" },
 { "bad-user", "bad-passwd", "Invalid credentials" } };
 }

 @Test(dataProvider = "loginData")
 public void testParameterized(String username, String password,
 String expectedText) {
 // Same test logic than the example before
 }

}

We create a method used as a data provider.

We specify this test will use the previous data provider that we call loginData.

A notable difference between JUnit 4 and TestNG regarding parameterized tests
is that the parameters (username, password, and expected test in this example)
are injected in TestNG as test method parameters.

JUnit 5
Jupiter (the programming and extension model of JUnit 5) provides a potent mecha‐
nism for creating parameterized tests. In a nutshell, we need two elements to imple‐
ment these tests in JUnit 5:

• An argument provider, which is the data source for the parameterized tests.
Table 8-1 provides a comprehensive summary of these argument providers.

• The annotation @ParameterizedTest (instead of the usual @Test annotation),
which decorates the test method where the parameters are injected.

248 | Chapter 8: Testing Framework Specifics

Table 8-1. Argument providers in JUnit 5

Annotation Description Example Example output
@ValueSource Array of literal values @ParameterizedTest

@ValueSource(strings = { "Hi", "Bye" })
void test(String argument) {
 log.debug("arg: {}", argument);
}

arg: Hi
arg: Bye

@EnumSource Constants of a Java
enumeration

@ParameterizedTest
@EnumSource(TimeUnit.class)
void test(TimeUnit argument) {
 log.debug("{}", argument);
}

NANOSECONDS
MICROSECONDS
MILLISECONDS
SECONDS
MINUTES
HOURS
DAYS

@MethodSource A static method of
the class that
provides a Stream
of values

static IntStream intProvider() {
 return IntStream.of(0, 1);
}

@ParameterizedTest
@MethodSource("intProvider")
void test(int argument) {
 log.debug("arg: {}", argument);
 assertNotNull(argument);
}

arg: 0
arg: 1

@CsvSource Comma-Separated
Values (CSV) within
the annotation

@ParameterizedTest
@CsvSource({ "hello, 1", "world, 2"})
void test(String first, int second) {
 log.debug("{} and {} ", first,
 second);
}

hello and 1
world and 2

@CsvFileSource Values in CSV format
in a file located in
the classpath

@ParameterizedTest
@CsvFileSource(resources =
 "/input.csv")
void test(String first, int second) {
 log.debug("{} and {} ", first,
 second);
}

hi and 3
there and 4

Parameterized Tests | 249

Annotation Description Example Example output
@ArgumentsSource A class that

implements the
ArgumentsPro
vider interface

@ParameterizedTest
@ArgumentsSource(MyArgs.class)
void test(String first, int second) {
 log.debug("{} and {} ", first,
 second);
}

public class MyArgs implements
 ArgumentsProvider {
 @Override
 public Stream<? extends
 Arguments> provideArguments(
 ExtensionContext context) {
 return Stream.of(Arguments.
 of("hi", 5), Arguments.
 of("there", 6));
 }
}

hi and 5
there and 6

@NullSource A single null
argument

@ParameterizedTest
@ValueSource(strings = { "one",
 "two" })
@NullSource
void test(String argument) {
 log.debug("arg: {}", argument);
}

arg: one
arg: two
arg: null

@EmptySource A single empty
argument

@ParameterizedTest
@ValueSource(strings = { "three",
 "four" })
@EmptySource
void test(String argument) {
 log.debug("arg: {}", argument);
}

arg: three
arg: four
arg:

@NullAndEmptySource A null plus an
empty argument

@ParameterizedTest
@ValueSource(strings = { "five",
 "six" })
@NullAndEmptySource
void test(String arg) {
 log.debug("arg: {}", arg);
}

arg: five
arg: six
arg: null
arg:

Example 8-3 illustrates the Jupiter version of the same parameterized test shown in
the previous examples. We can use different argument providers to implement this
parameterized test. In this case, we use @MethodSource to return a stream of argu‐
ments. An alternative that might fit well for this test is using @CsvSource to embed
the input data and expected outcome as CSV format.

250 | Chapter 8: Testing Framework Specifics

Example 8-3. Parameterized test using JUnit 5

class ParameterizedJupiterTest {

 WebDriver driver;

 @BeforeEach
 void setup() {
 driver = WebDriverManager.chromedriver().create();
 }

 @AfterEach
 void teardown() {
 driver.quit();
 }

 static Stream<Arguments> loginData() {
 return Stream.of(Arguments.of("user", "user", "Login successful"),
 Arguments.of("bad-user", "bad-passwd", "Invalid credentials"));
 }

 @ParameterizedTest
 @MethodSource("loginData")
 void testParameterized(String username, String password,
 String expectedText) {
 // Same test logic than the examples before
 }

}

We define a static method to be used as an argument provider in @MethodSource.

Instead of a regular @Test, we implement a parameterized test.

The argument provider is linked to the data provided by the loginData method.

The parameters are injected in the test method.

Selenium-Jupiter
You can use the same approach for implementing JUnit 5 parameterized tests when
using Selenium-Jupiter. The only difference is that you delegate the creation and dis‐
posal of WebDriver objects with Selenium-Jupiter. Example 8-4 demonstrates how to
implement the same test explained in the previous sections (i.e., parameterized login)
but using Selenium-Jupiter.

Parameterized Tests | 251

Example 8-4. Parameterized test using JUnit 5 with Selenium-Jupiter

@ExtendWith(SeleniumJupiter.class)
class ParameterizedSelJupTest {

 static Stream<Arguments> loginData() {
 return Stream.of(Arguments.of("user", "user", "Login successful"),
 Arguments.of("bad-user", "bad-passwd", "Invalid credentials"));
 }

 @ParameterizedTest
 @MethodSource("loginData")
 void testParameterized(String username, String password,
 String expectedText, ChromeDriver driver) {
 // Same test logic than the examples before
 }

}

When using different parameter resolvers in a Jupiter test, by convention, we
must first declare the parameters injected due to @ParameterizedTest, and then
the parameter injected by extensions (Selenium-Jupiter in this case, for Web
Driver objects).

Cross-Browser Testing
Cross-browser testing is a kind of functional testing in which we verify that a web
application works as expected using different types of web browsers. A possible way
to implement cross-browser tests is through parameterized tests using the browser
type (i.e., Chrome, Firefox, Edge, etc.) as the test parameter. The following sections
describe how to use the unit testing framework capabilities for parameterized testing
applied to cross-browser testing. We will use local browsers (Chrome, Firefox, and
Edge) in these examples. An alternative way to carry out cross-browser testing is to
use remote browsers (from a Selenium Server, cloud provider, or Docker), as
explained in Chapter 6.

JUnit 4
Example 8-5 shows a cross-browser test implemented with JUnit 4. We use
WebDriverManager to ease the parameterization. As explained in “Generic Manager”
on page 353, WebDriverManager can use one or another manager depending on the
value of a parameter. This parameter can be a WebDriver class, an enumeration, or
the browser name. We use the latter in the following examples (although you can find
the alternative methods in the examples repository).

252 | Chapter 8: Testing Framework Specifics

https://github.com/bonigarcia/selenium-webdriver-java

Example 8-5. Cross-browser testing using JUnit 4

@RunWith(Parameterized.class)
public class CrossBrowserJUnit4Test {

 WebDriver driver;

 @Parameter(0)
 public String browserName;

 @Parameters(name = "{index}: browser={0}")
 public static Collection<Object[]> data() {
 return Arrays.asList(
 new Object[][] { { "chrome" }, { "edge" }, { "firefox" } });
 }

 @Before
 public void setup() {
 driver = WebDriverManager.getInstance(browserName).create();
 }

 @After
 public void teardown() {
 driver.quit();
 }

 @Test
 public void testCrossBrowser() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getTitle()).contains("Selenium WebDriver");
 }

}

We specify three browsers using their names.

We use the WebDriverManager generic manager, using these browser names as
the parameters. An alternative way to select one or another browser is using the
generic manager without parameters (i.e., with the method .getInstance(), as
explained in “Generic Manager” on page 353) and then parameterize the test (or
the suite) using the Java system property wdm.defaultBrowser (for instance,
when running it with Maven or Gradle).

This test is executed three times, using a different browser (Chrome, Edge, and
Firefox) each time.

Parameterized Tests | 253

TestNG
Example 8-6 shows the same cross-browser test, this time using TestNG. In this case,
the test parameter (the browser name) is injected into the test method.

Example 8-6. Cross-browser testing using TestNG

public class CrossBrowserNGTest {

 WebDriver driver;

 @DataProvider(name = "browsers")
 public static Object[][] data() {
 return new Object[][] { { "chrome" }, { "edge" }, { "firefox" } };
 }

 @AfterMethod
 public void teardown() {
 driver.quit();
 }

 @Test(dataProvider = "browsers")
 public void testCrossBrowser(String browserName) {
 driver = WebDriverManager.getInstance(browserName).create();

 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getTitle()).contains("Selenium WebDriver");
 }

}

We need to create the WebDriver instance in the test logic since the test parame‐
ters are injected in the test method when using TestNG.

JUnit 5
Example 8-7 shows the same cross-browser test following the Jupiter model. Again,
we use WebDriverManager to create the WebDriver instance, using the browser name
as a parameter. Since these parameters are strings, we use @ValueSource as an argu‐
ment provider.

Example 8-7. Cross-browser testing using JUnit 5

class CrossBrowserJupiterTest {

 WebDriver driver;

 @AfterEach

254 | Chapter 8: Testing Framework Specifics

 void teardown() {
 driver.quit();
 }

 @ParameterizedTest
 @ValueSource(strings = { "chrome", "edge", "firefox" })
 void testCrossBrowser(String browserName) {
 driver = WebDriverManager.getInstance(browserName).create();

 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getTitle()).contains("Selenium WebDriver");
 }

}

In Jupiter, the parameters in parameterized tests are injected in the test methods.
For this reason, we need to create the driver instance in the test logic.

Selenium-Jupiter
Selenium-Jupiter provides a complementary feature for creating cross-browser tests,
called test templates. Test templates are a special kind of parameterized test supported
by Jupiter in which an extension collects the parameters. Selenium-Jupiter uses this
feature to provide a comprehensive way to specify different browser aspects (such as
type, version, arguments, and capabilities) using a custom JSON notation called a
browser scenario in Selenium-Jupiter jargon. You can find more details about this fea‐
ture in the Selenium-Jupiter documentation.

Example 8-8 shows a sample browser scenario. This JSON is stored in a file called
browsers.json, the default name used by a template test. Example 8-9 shows a tem‐
plate test using this browser scenario.

Example 8-8. Browser scenario for a test template in Selenium-Jupiter

{
 "browsers": [
 [
 {
 "type": "chrome"
 }
],
 [
 {
 "type": "edge",
 "arguments" : [
 "--headless"
]
 }
],

Parameterized Tests | 255

https://bonigarcia.dev/selenium-jupiter/#template-tests

 [
 {
 "type": "firefox-in-docker",
 "version": "93"
 }
]
]
}

This browser scenario contains three browsers. The first one is a local Chrome.

The second browser is a local Edge in headless mode.

The third browser is Firefox 93, executed in a Docker container.

Example 8-9. Cross-browser testing using test templates in JUnit 5 with Selenium-Jupiter

@EnabledIfDockerAvailable
@ExtendWith(SeleniumJupiter.class)
class CrossBrowserJsonSelJupTest {

 @TestTemplate
 void testCrossBrowser(WebDriver driver) {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getTitle()).contains("Selenium WebDriver");
 }

}

We use this Selenium-Jupiter annotation to skip the test when Docker is unavail‐
able (since one of the browsers defined in the scenario uses Docker).

We need to decorate the test method using @TestTemplate instead of the usual
@Test annotation.

We use the generic WebDriver to inject the driver instances. Alternatively, Remote
WebDriver is also valid for test templates.

Categorizing and Filtering Tests
A common need when basing a test suite on Selenium WebDriver (especially when
the number of tests is high) is to execute only a group of tests. There are different
ways to achieve single or group test execution. When using an IDE to run tests, we
can select the specific test(s) to be executed. When using the command line, there are
other mechanisms we can use to select these tests.

256 | Chapter 8: Testing Framework Specifics

At first glance, we can use the filtering mechanisms provided by the build tools. For
instance, Maven and Gradle allow including or excluding tests based on the test
classes and method names. The basic syntax for these commands is introduced in
Appendix C. Table 8-2 shows several common examples using these commands.
Notice that the wildcard * is used in these examples to match any character in the test
class name.

Table 8-2. Examples of Maven and Gradle commands for including and excluding tests

Description Maven Gradle
Run tests starting with
the word Hello

mvn -B test
 -Dtest=Hello*

gradle test
 --tests Hello*

Run tests that contain
Basic or Timeout

mvn test
 -Dtest=*Basic*,*Timeout*

gradle test
 --tests *Basic* --tests *Timeout*

Run tests except those
starting with Firefox

mvn test
 -Dtest=!*Firefox*

gradle test
 -PexcludeTests=**/*Firefox*

Run tests except those
starting with Docker or
containing Remote

mvn test
 -Dtest=!Docker*,!*Remote*

gradle test
 -PexcludeTests=**/Docker*,**/*Remote*

In addition to the build tool, we can use built-in features provided by the unit testing
frameworks for categorizing (also known as grouping or tagging) and filtering tests
based on those categories. The following subsections explain how.

JUnit 4
JUnit 4 provides the annotation @Category to group tests. We need to specify one or
more Java classes as attributes in this annotation. Then we can use these classes to
select and execute the tests belonging to one or more categories. Example 8-10 shows
a basic class using this feature.

Example 8-10. Test using categories and JUnit 4

public class CategoriesJUnit4Test {

 WebDriver driver;

 @Before
 public void setup() {
 driver = WebDriverManager.chromedriver().create();
 }

 @After
 public void teardown() {
 driver.quit();
 }

Categorizing and Filtering Tests | 257

 @Test
 @Category(WebForm.class)
 public void testCategoriesWebForm() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");
 assertThat(driver.getCurrentUrl()).contains("web-form");
 }

 @Test
 @Category(HomePage.class)
 public void tesCategoriestHomePage() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getCurrentUrl()).doesNotContain("web-form");
 }

}

WebForm is an empty interface available in the examples repository.

HomePage is another empty interface available in the examples repository.

Then we can use the command line to execute tests based on their groups. For
instance, the following commands show the Maven and Gradle command for run‐
ning the tests that belong to the HomePage category.

mvn test -Dgroups=
 io.github.bonigarcia.webdriver.junit4.ch08.categories.HomePage
gradle test -Pgroups=
 io.github.bonigarcia.webdriver.junit4.ch08.categories.HomePage

We can combine this filtering with the Maven and Gradle support for selecting tests
based on the class name. For instance, the following commands execute those tests
belonging to the HomePage category but only in the test class CategoriesJUnit4Test.

mvn test -Dtest=CategoriesJUnit4Test -DexcludedGroups=
 io.github.bonigarcia.webdriver.junit4.ch08.categories.HomePage
gradle test --tests CategoriesJUnit4Test -PexcludedGroups=
 io.github.bonigarcia.webdriver.junit4.ch08.categories.HomePage

TestNG
TestNG also allows grouping tests. Example 8-11 demonstrates a basic use of this fea‐
ture. In summary, the @Test annotation allows specifying string labels for these
groups.

258 | Chapter 8: Testing Framework Specifics

Example 8-11. Test using groups and TestNG

public class CategoriesNGTest {

 WebDriver driver;

 @BeforeMethod(alwaysRun = true)
 public void setup() {
 driver = WebDriverManager.chromedriver().create();
 }

 @AfterMethod(alwaysRun = true)
 public void teardown() {
 driver.quit();
 }

 @Test(groups = { "WebForm" })
 public void testCategoriesWebForm() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");
 assertThat(driver.getCurrentUrl()).contains("web-form");
 }

 @Test(groups = { "HomePage" })
 public void tesCategoriestHomePage() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getCurrentUrl()).doesNotContain("web-form");
 }

}

We set to true the attribute alwaysRun to indicate that the setup and teardown
methods are not filtered during test execution.

We assign the group name WebForm to the first test of this class.

We set the group name HomePage to the second test.

Then we can use the command line to filter the test execution based on these cate‐
gories. The following snippet first shows how to execute the test that belongs to the
HomePage group. The second illustrates how to combine this grouping with the
Maven and Gradle filtering mechanism based on the class name.

mvn test -Dgroups=HomePage
gradle test -Pgroups=HomePage

mvn test -Dtest=CategoriesNGTest -DexcludedGroups=HomePage
gradle test --tests CategoriesNGTest -PexcludedGroups=HomePage

Categorizing and Filtering Tests | 259

JUnit 5
The Jupiter programming model provides a way to group tests based on custom
labels called tags. We use the annotation @Tag for that purpose. Example 8-12 illus‐
trates this feature.

Example 8-12. Test using tags and JUnit 5

class CategoriesJupiterTest {

 WebDriver driver;

 @BeforeEach
 void setup() {
 driver = WebDriverManager.chromedriver().create();
 }

 @AfterEach
 void teardown() {
 driver.quit();
 }

 @Test
 @Tag("WebForm")
 void testCategoriesWebForm() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");
 assertThat(driver.getCurrentUrl()).contains("web-form");
 }

 @Test
 @Tag("HomePage")
 void testCategoriesHomePage() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getCurrentUrl()).doesNotContain("web-form");
 }

}

We mark the first test using the label WebForm.

We categorize the second test using the HomePage tag.

We can use these tags to include or exclude tests when executing tests using the com‐
mand line. The following commands show several examples for Maven and Gradle:

260 | Chapter 8: Testing Framework Specifics

mvn test -Dgroups=HomePage
gradle test -Pgroups=HomePage

mvn test -Dtest=CategoriesNGTest -DexcludedGroups=HomePage
gradle test --tests CategoriesNGTest -PexcludedGroups=HomePage

Ordering Tests
The test execution order is unknown beforehand in the unit testing frameworks used
in this book. Nevertheless, there are mechanisms to select a given execution order.
One possible use of this feature in the Selenium WebDriver arena is to reuse the same
browser session (i.e., use the same WebDriver instance) by different tests, interacting
with the SUT in a given order. The following examples demonstrate this use case for
JUnit 4, TestNG, JUnit 5, and JUnit 5 plus Selenium-Jupiter.

JUnit 4
JUnit 4 provides the annotation @FixMethodOrder to establish the test execution. This
annotation accepts an enumeration called MethodSorters, which is composed of the
following values:

NAME_ASCENDING

Sorts the test methods by the method name in lexicographic order

JVM

Leaves the test methods in the order returned by the JVM

DEFAULT

Sorts the test methods in a deterministic, but not predictable, order

Example 8-13 shows a complete test case in which the tests are executed using the
method name.

Example 8-13. Ordering tests using JUnit 4

@FixMethodOrder(MethodSorters.NAME_ASCENDING)
public class OrderJUnit4Test {

 static WebDriver driver;

 @BeforeClass
 public static void setup() {
 driver = WebDriverManager.chromedriver().create();
 }

 @AfterClass
 public static void teardown() {
 driver.quit();

Ordering Tests | 261

 }

 @Test
 public void testA() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/navigation1.html");
 assertBodyContains("Lorem ipsum");
 }

 @Test
 public void testB() {
 driver.findElement(By.linkText("2")).click();
 assertBodyContains("Ut enim");
 }

 @Test
 public void testC() {
 driver.findElement(By.linkText("3")).click();
 assertBodyContains("Excepteur sint");
 }

 void assertBodyContains(String text) {
 String bodyText = driver.findElement(By.tagName("body")).getText();
 assertThat(bodyText).contains(text);
 }

}

We use the annotation @FixMethodOrder at the class level to fix the order of the
tests available in this class.

We create the driver instance before all tests (since we want to use the WebDriver
session in all the tests).

We quit the driver instance after all tests. Therefore, we finish the session after
the last test of this class.

Since the test names are lexicographically ordered (testA, testB, and testC), the
test execution will follow this sequence.

TestNG
A simple way to order tests in TestNG is using an incremental priority for each test.
Example 8-14 demonstrates this feature, by using the attribute priority in the @Test
annotation.

262 | Chapter 8: Testing Framework Specifics

Example 8-14. Ordering tests using TestNG

public class OrderNGTest {

 static WebDriver driver;

 @BeforeClass
 public static void setup() {
 driver = WebDriverManager.chromedriver().create();
 }

 @AfterClass
 public static void teardown() {
 driver.quit();
 }

 @Test(priority = 1)
 public void testA() {
 // Test logic
 }

 @Test(priority = 2)
 public void testB() {
 // Test logic
 }

 @Test(priority = 3)
 public void testC() {
 // Test logic
 }

}

JUnit 5
Jupiter provides the annotation @TestMethodOrder for ordering tests. This annota‐
tion can be configured using the following ordering implementations:

DisplayName

Sorts test methods alphanumerically based on their display names.

MethodName

Sorts test methods alphanumerically based on their names.

OrderAnnotation

Sorts test methods based on the numeric values specified using the @Order anno‐
tation. Example 8-15 shows a test using this method.

Random

Orders test methods pseudorandomly.

Ordering Tests | 263

Example 8-15. Ordering tests using JUnit 5

@TestMethodOrder(OrderAnnotation.class)
class OrderJupiterTest {

 static WebDriver driver;

 @BeforeAll
 static void setup() {
 driver = WebDriverManager.chromedriver().create();
 }

 @AfterAll
 static void teardown() {
 driver.quit();
 }

 @Test
 @Order(1)
 void testA() {
 // Test logic
 }

 @Test
 @Order(2)
 void testB() {
 // Test logic
 }

 @Test
 @Order(3)
 void testC() {
 // Test logic
 }

}

Selenium-Jupiter
As usual, tests using Selenium-Jupiter also use the Jupiter programming model;
therefore, these features (such as test ordering) also are valid for Selenium-Jupiter
tests. Example 8-16 shows the same test as before, using Selenium-Jupiter for the
driver instantiation. By default, the driver objects are created before each test and ter‐
minated after each test. Selenium-Jupiter provides the annotation @SingleSession to
change this behavior, creating the driver instance before all tests, and closing the ses‐
sion after all tests.

264 | Chapter 8: Testing Framework Specifics

Example 8-16. Ordering tests using JUnit 5 with Selenium-Jupiter

@ExtendWith(SeleniumJupiter.class)
@TestMethodOrder(OrderAnnotation.class)
@SingleSession
class OrderSelJupTest {

 WebDriver driver;

 OrderSelJupTest(ChromeDriver driver) {
 this.driver = driver;
 }

 @Test
 @Order(1)
 void testA() {
 // Test logic
 }

 @Test
 @Order(2)
 void testB() {
 // Test logic
 }

 @Test
 @Order(3)
 void testC() {
 // Test logic
 }

}

Failure Analysis
Failure analysis (also known as troubleshooting) is the process of gathering and ana‐
lyzing data to discover the cause of a failure. This process can be challenging for Sele‐
nium WebDriver tests because the whole system is tested, and the underlying root
causes of a failed test can be multiple. For instance, the cause of a failure in an end-to-
end test might be the client-side (frontend) logic, the server-side (backend) logic, or
even the integration with other components (e.g., database or external services).

We can use different techniques to help developers and testers in the failure analysis
process. A typical way to do this is to detect when a test has failed and, before termi‐
nating the driver session, gather some data to discover the cause. The following assets
can help in this process:

Failure Analysis | 265

Screenshots
A picture of the web application UI after a test failure might help determine the
failure cause. “Screenshots” on page 112 explains how to use the Selenium Web‐
Driver API to make screenshots.

Browser log
The JavaScript console can be another potential source of information when an
error occurs. “Log Gathering” on page 168 explains how to carry out this log
gathering.

Session recordings
We can easily record the browser session when using browsers in Docker con‐
tainers. “Browsers in Docker Containers” on page 219 explains how to do this
with WebDriverManager and Selenium-Jupiter.

The following subsections provide basic examples for making browser screenshots of
failed tests. To that aim, we need to relay in the unit testing specific features to detect
failed tests.

JUnit 4
JUnit allows tuning the default behavior of tests by using rules. A test class defines a
rule by decorating a class attribute with the @Rule annotation. Table 8-3 summarizes
the rules provided out of the box by JUnit 4.

Table 8-3. Rules in JUnit 4

Rule Description Example
ErrorCollector Allows the execution of a test to

continue when exceptions happen
(while collecting these exceptions)

@Rule
public ErrorCollector collector =
 new ErrorCollector();

@Ignore
@Test
public void test() {
 collector.checkThat("a", equalTo("b"));
 collector.checkThat(1, equalTo(2));
}

266 | Chapter 8: Testing Framework Specifics

Rule Description Example
ExternalResource Provides a base class to set up and

tear down an external resource
before each test

private Resource resource;

@Rule
public ExternalResource rule =
 new ExternalResource() {
 @Override
 protected void before() throws Throwable {
 resource = new Resource();
 resource.open();
 }

 @Override
 protected void after() {
 resource.close();
 }
};

TestName Makes the current test name
available for test methods

@Rule
public TestName name = new TestName();

@Test
public void testA() {
 assertThat("testA")
 .isEqualTo(name.getMethodName());
}

TemporaryFolder Allows for the creation of
temporary files and folders

@Rule
public TemporaryFolder folder =
 new TemporaryFolder();

@Test
public void test() throws IOException {
 File file = folder.newFile("myfile.txt");
}

Timeout Applies a timeout to all test
methods in a class

@Rule
public Timeout timeout =
 new Timeout(10, SECONDS);

@Test
public void test() {
 while (true);
}

Failure Analysis | 267

Rule Description Example
TestWatcher Allows the capture of several

execution phases of a test: start
ing, succeeded, failed,
skipped, and finished.

@Rule
public TestWatcher watcher =
 new TestWatcher() {
 @Override
 protected void succeeded(Description d) {
 log.debug("Test succeeded: {}",
 d.getMethodName());
 }

 @Override
 protected void failed(Throwable e,
 Description d) {
 log.debug("Test failed: {}",
 d.getMethodName());
 }
};

We can use the TestWatcher rule to gather data for failure analysis with JUnit 4.
Example 8-17 shows a test that captures a screenshot when the test fails.
Example 8-18 contains the implementation for this rule. As noted earlier, we make a
browser screenshot. The logic to make this screenshot is available in Example 8-19.

Example 8-17. Analyzing failed tests using JUnit 4

public class FailureJUnit4Test {

 static WebDriver driver;

 @Rule
 public TestRule testWatcher = new FailureWatcher(driver);

 @BeforeClass
 public static void setup() {
 driver = WebDriverManager.chromedriver().create();
 }

 @AfterClass
 public static void teardown() {
 driver.quit();
 }

 @Test
 public void testFailure() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 fail("Forced error");
 }

}

268 | Chapter 8: Testing Framework Specifics

We define the rule at the class level, passing the driver instance as a parameter.

We force this test to fail to make the screenshot of the browser using the rule.

Example 8-18. Analyzing failed tests using JUnit 4

public class FailureWatcher extends TestWatcher {

 FailureManager failureManager;

 public FailureWatcher(WebDriver driver) {
 failureManager = new FailureManager(driver);
 }

 @Override
 public void failed(Throwable throwable, Description description) {
 failureManager.takePngScreenshot(description.getDisplayName());
 }

}

We encapsulate the logic for failure analysis in a separate class.

We override the method triggered when the test fails. In this case, we simply use
the failure manager instance to make a screenshot.

Example 8-19. Analyzing failed tests using JUnit 4

public class FailureManager {

 static final Logger log = getLogger(lookup().lookupClass());

 WebDriver driver;

 public FailureManager(WebDriver driver) {
 this.driver = driver;
 }

 public void takePngScreenshot(String filename) {
 TakesScreenshot ts = (TakesScreenshot) driver;
 File screenshot = ts.getScreenshotAs(OutputType.FILE);
 Path destination = Paths.get(filename + ".png");

 try {
 Files.move(screenshot.toPath(), destination);
 } catch (IOException e) {
 log.error("Exception moving screenshot from {} to {}", screenshot,
 destination, e);
 }

Failure Analysis | 269

 }

}

We take the screenshot as a PNG file, stored with a file name passed as a parame‐
ter.

TestNG
TestNG provides several listeners out of the box. These listeners are classes that cap‐
ture different events of the test lifecycle. For instance, the ITestResult listener allows
you to monitor the status and result of a test. As Example 8-20 shows, we can easily
use this listener to implement failure analysis in a Selenium WebDriver test.

Example 8-20. Analyzing failed tests using TestNG

public class FailureNGTest {

 WebDriver driver;

 @BeforeMethod
 public void setup() {
 driver = WebDriverManager.chromedriver().create();
 }

 @AfterMethod
 public void teardown(ITestResult result) {
 if (result.getStatus() == ITestResult.FAILURE) {
 FailureManager failureManager = new FailureManager(driver);
 failureManager.takePngScreenshot(result.getName());
 }

 driver.quit();
 }

 @Test
 public void testFailure() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 fail("Forced error");
 }

}

We declare an ITestResult parameter in the method for test teardown.

We read the status of the test.

270 | Chapter 8: Testing Framework Specifics

In case of failure, we create an instance of the failure manager (we use the same
logic described in Example 8-19) for creating a screenshot.

JUnit 5
In JUnit 5, the Jupiter extension model replaced and improved the former test
lifecycle management of JUnit 4 based on rules. As introduced in Chapter 2, the
extension model provided by Jupiter allows adding new features on the top of the
Jupiter programming model. This way, a Jupiter extension is a Java class that imple‐
ments one or several extension points, which are interfaces that allow different types
of operations in the Jupiter programming model. Table 8-4 summarizes the extension
points provided by Jupiter.

Table 8-4. Jupiter extension points

Category Description Extension point(s)
Test lifecycle
callbacks

To include custom logic during the test
lifecycle

BeforeAllCallback
BeforeEachCallback
BeforeTestExecutionCallback
AfterTestExecutionCallback
AfterEachCallback
AfterAllCallback

Parameter
resolution

To inject parameters in test methods or
constructors

ParameterResolver

Test templates To implement tests using @TestTemplate TestTemplateInvocationContextProvider

Conditional test
execution

To enable or disable tests depending on
custom conditions

ExecutionCondition

Exception handling To handle exceptions during the test and its
lifecycle

TestExecutionExceptionHandler
LifecycleMethodExecutionExceptionHandler

Test instance To create and process test class instances TestInstanceFactory
TestInstancePostProcessor
TestInstancePreDestroyCallback

Intercepting
invocations

To intercept calls to test code (and decide
whether or not these calls proceed)

InvocationInterceptor

A convenient extension point for implementing failure analysis is AfterTestExecu
tionCallback, since it allows including custom logic immediately after an individual
test has been executed. Example 8-21 provides a Jupiter test using a custom annota‐
tion (see Example 8-22) implementing this extension point.

Failure Analysis | 271

Example 8-21. Analyzing failed tests using JUnit 5

class FailureJupiterTest {

 static WebDriver driver;

 @RegisterExtension
 FailureWatcher failureWatcher = new FailureWatcher(driver);

 @BeforeAll
 static void setup() {
 driver = WebDriverManager.chromedriver().create();
 }

 @AfterAll
 static void teardown() {
 driver.quit();
 }

 @Test
 void testFailure() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 fail("Forced error");
 }

}

We use the FailureWatcher extension for the tests available in this class. We pass
the driver instance as an argument.

We force a failure to make the extension take the browser screenshot.

Example 8-22. Analyzing failed tests using JUnit 5

public class FailureWatcher implements AfterTestExecutionCallback {

 FailureManager failureManager;

 public FailureWatcher(WebDriver driver) {
 failureManager = new FailureManager(driver);
 }

 @Override
 public void afterTestExecution(ExtensionContext context) throws Exception {
 if (context.getExecutionException().isPresent()) {
 failureManager.takePngScreenshot(context.getDisplayName());
 }
 }

}

272 | Chapter 8: Testing Framework Specifics

This extension implements a single extension point: AfterTestExecution

Callback.

This extension point must override this method, which is executed immediately
after each test.

We check if an execution exception is present.

If so, we take a screenshot using the WebDriver instance.

Selenium-Jupiter
Selenium-Jupiter is a Jupiter extension that, among other features, allows making
browser screenshots effortlessly. Example 8-23 demonstrates this feature.

Example 8-23. Analyzing failed tests JUnit 5 with Selenium-Jupiter

class FailureSelJupTest {

 @RegisterExtension
 static SeleniumJupiter seleniumJupiter = new SeleniumJupiter();

 @BeforeAll
 static void setup() {
 seleniumJupiter.getConfig().enableScreenshotWhenFailure();
 }

 @Test
 void testFailure(ChromeDriver driver) {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 fail("Forced error");
 }

}

Selenium-Jupiter takes a browser screenshot in the case of failed tests simply by
using this configuration capability.

Retrying Tests
As explained in Chapter 7, test flakiness (i.e., lack of reliability) is a well-known issue
in end-to-end tests. As testers, we sometimes need to identify a flaky test (i.e., a test
that passes or fails under the same conditions), and for that, we retry a given test to
check whether its result is consistent. Thus, we might want a mechanism to retry tests
in case of failure. This section explains how to carry out this process using the differ‐
ent unit testing frameworks.

Retrying Tests | 273

JUnit 4
We need to use a custom JUnit 4 rule for retrying failed tests. Example 8-24 shows a
test using an example of this kind of rule, and Example 8-25 contains the source code
of that rule.

Example 8-24. Retrying tests using JUnit 4

public class RandomCalculatorJUnit4Test {

 static WebDriver driver;

 @Rule
 public RetryRule retryRule = new RetryRule(5);

 @BeforeClass
 public static void setup() {
 driver = WebDriverManager.chromedriver().create();
 }

 @AfterClass
 public static void teardown() {
 driver.quit();
 }

 @Test
 public void testRandomCalculator() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/random-calculator.html");
 // 1 + 3
 driver.findElement(By.xpath("//span[text()='1']")).click();
 driver.findElement(By.xpath("//span[text()='+']")).click();
 driver.findElement(By.xpath("//span[text()='3']")).click();
 driver.findElement(By.xpath("//span[text()='=']")).click();

 // ... should be 4
 String result = driver.findElement(By.className("screen")).getText();
 assertThat(result).isEqualTo("4");
 }

}

We declare the retrying rule as a test attribute.

We use the same browser for all the repetitions.

We open a practice web page called random calculator. This page has been
designed to produce incorrect results a given percentage of the time (50% by

274 | Chapter 8: Testing Framework Specifics

default). Then the calculator works perfectly after a configurable number of times
(five by default).

We use the calculator GUI to make an essential arithmetic operation.

We verify the result. There is a 50% probability of getting an incorrect result for
the first five attempts.

Example 8-25. JUnit 4 rule for retrying failed tests

public class RetryRule implements TestRule {

 static final Logger log = getLogger(lookup().lookupClass());

 int maxRetries;

 public RetryRule(int maxRetries) {
 this.maxRetries = maxRetries;
 }

 @Override
 public Statement apply(Statement base, Description description) {
 return new Statement() {
 @Override
 public void evaluate() throws Throwable {
 Throwable throwable = null;
 for (int i = 0; i < maxRetries; i++) {
 try {
 base.evaluate();
 return;
 } catch (Throwable t) {
 throwable = t;
 log.debug("{}: run {} failed",
 description.getDisplayName(), i + 1);
 }
 }
 log.debug("{}: giving up after {} failures",
 description.getDisplayName(), maxRetries);
 throw throwable;
 }
 };
 }
}

We implement the generic interface for JUnit 4 rules, i.e., TestRule.

This rule accepts an integer value in its constructor, used to determine the maxi‐
mum number of retries.

Retrying Tests | 275

We need to override the method apply, which allows manipulation of the test
lifecycle.

We repeat the test execution in a loop, repeated a maximum number of times
equal to the number of retries.

In case of error during test execution, we get the exception object and repeat the
test execution.

If this line is reached, it means the test has been repeated the maximum number
of times.

TestNG
TestNG provides a custom capability for implementing test retries. As shown in
Example 8-26, we use the attribute retryAnalyzer of a @Test annotation to enable
this feature. Example 8-27 shows the implementation for that retries analyzer.

Example 8-26. Retrying tests using TestNG

@Test(retryAnalyzer = RetryAnalyzer.class)
public void testRandomCalculator() {
 // Same logic than the example before
}

Example 8-27. Test analyzer for TestNG

public class RetryAnalyzer implements IRetryAnalyzer {

 static final int MAX_RETRIES = 5;

 int retryCount = 0;

 @Override
 public boolean retry(ITestResult result) {
 if (retryCount <= MAX_RETRIES) {
 retryCount++;
 return true;
 }
 return false;
 }
}

We need to implement a TestNG listener called IRetryAnalyzer to implement a
retry analyzer.

276 | Chapter 8: Testing Framework Specifics

We cannot parameterize this class; therefore, we declare the maximum retries
number within the class (as a constant, in this case).

We need to override the method retry. This method returns a boolean value that
determines if the test is retried or not in case of failure.

The logic to determine this value is an accumulator that checks if the retries
threshold is reached.

JUnit 5
We need to use the extension model previously explained (see Table 8-4) for retrying
failed tests. Instead of reinventing the wheel, we can use an existing open source Jupi‐
ter extension for this aim. To retry tests, and as introduced in Chapter 2, there are
various alternatives: JUnit Pioneer or rerunner-jupiter. Example 8-28 shows a test
using the latter.

Example 8-28. Retrying tests using JUnit 5

@RepeatedIfExceptionsTest(repeats = 5)
void testRandomCalculator() {
 // Same logic as the example before
}

Simply decorating a test with this annotation, we repeat the test a maximum
number of times (five in this case) in case of failure.

Selenium-Jupiter
Tests using Selenium-Jupiter can also use other extensions. Example 8-29 shows how
to use rerunner-jupiter in a Selenium-Jupiter test.

Example 8-29. Retrying tests JUnit 5 with Selenium-Jupiter

@SingleSession
@ExtendWith(SeleniumJupiter.class)
class RandomCalculatorSelJupTest {

 @RepeatedIfExceptionsTest(repeats = 5)
 void testRandomCalculator(ChromeDriver driver) {
 // Same logic than the example before
 }

}

Retrying Tests | 277

https://junit-pioneer.org
https://github.com/artsok/rerunner-jupiter

We reuse the same browser for all the possible repetitions.

Parallel Test Execution
The time required to execute a Selenium WebDriver test suite (especially if the num‐
ber of tests is high) can be considerable. The reason for this slowness is that a regular
Selenium WebDriver test starts a new browser each time, and as a result, the overall
execution time rises. A possible solution to this problem is to execute tests in parallel.
There are different ways to achieve this parallelization. First, we can use the built-in
capabilities for parallel execution provided by the build tools (Maven or Gradle). Sec‐
ond, we can use the features provided by the unit testing frameworks (JUnit 4 or 5,
and TestNG) to that aim. The following subsections explain all these options.

Maven
Maven offers different mechanisms for parallel execution. First, Maven allows build‐
ing modules of multimodule projects in parallel. For that, we need to invoke the
Maven command from the command line using the option -T. This option accepts
two types of arguments for parallelization: using a fixed number of threads or using a
factor multiplied by the number of available CPU cores in your system. The following
snippet shows an example of each type:

mvn test -T 4
mvn test -T 1C

It executes the test of a multimodule project (e.g., the examples repository) in
parallel using four threads.

It executes the test of a multimodule project using the same number of threads as
the CPU cores (for example, four threads in a quad-core system).

In addition, the plug-in used to execute unit tests in Maven (called Surefire) provides
two ways to run tests in parallel. The first is multithreading inside a single JVM
process. To enable this mode, we need to specify different configuration parameters,
such as:

parallel

To configure the level of granularity for parallelism. The possible values for this
parameter are methods (to execute test methods in separate threads), classes
(for test classes), suites (for test suites), suitesAndClasses (for test suites and
classes), suitesAndMethods (for test suites and methods), and all (to execute
every test in separate threads).

threadCount

To define the maximum number of threads for parallelism.

278 | Chapter 8: Testing Framework Specifics

useUnlimitedThreads

To allow an unlimited number of threads.

There are two ways to specify these configuration parameters. First, we can configure
them directly on the Maven configuration file (i.e., the pom.xml file). Example 8-30
demonstrates how. In addition, we can specify these parameters as system properties
when using the command line, for example:

mvn test -Dparallel=classesAndMethods -DthreadCount=4

Example 8-30. Maven Surefire configuration sample for parallel execution

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>${maven-surefire-plugin.version}</version>
 <configuration>
 <parallel>classesAndMethods</parallel>
 <threadCount>4</threadCount>
 </configuration>
 </plugin>
 </plugins>
</build>

The second way to implement parallelism with Maven Surefire is forking, i.e., creating
multiple JVM processes. This option can be helpful if we need to prevent thread-level
concurrency issues since different processes do not share memory space, as happens
in multithreading. As a drawback, forking consumes more memory and has lower
performance. To enable forking, we need to use the forkCount configuration prop‐
erty (again, in the pom.xml or as a system property) to a value higher than one (i.e.,
the number of JVM process to be created). For example, the following command exe‐
cutes the tests of a Maven project using four JVM processes:

mvn test -DforkCount=4

Gradle
Gradle also provides several ways to execute tests in parallel. First, it allows executing
tasks in parallel in a multimodule project. There are two ways to enable this mode.
First, by setting the property org.gradle.parallel=true in the configuration file
gradle.properties. Second, using the option --parallel in the command, for
example:

gradle test --parallel

Parallel Test Execution | 279

In addition, we can use the configuration property maxParallelForks in the Gradle
configuration file to specify the maximum number of test processes to start in paral‐
lel. By default, Gradle executes a single test class at a time. We change this default
behavior by setting a value higher than one for this parameter. In addition to a fixed
value, we can specify the number of available CPU cores in your system:

maxParallelForks = Runtime.runtime.availableProcessors()

In the example repository, this property is enabled conditionally using a profile called
parallel (see Appendix C). Therefore, we can use this profile using the command
line:

gradle test -Pparallel

JUnit 4
JUnit provides a basic way to execute tests in parallel through the class Parallel
Computer. This class accepts two boolean parameters in its constructor to enable par‐
allel test execution of classes and methods, respectively. Example 8-31 shows a test
using this class.

Example 8-31. Parallel test execution using JUnit 4

public class ParallelJUnit4Suite {

 @Test
 public void runInParallel() {
 Class<?>[] classes = { Parallel1JUnit4Test.class,
 Parallel2JUnit4Test.class };
 JUnitCore.runClasses(new ParallelComputer(true, true), classes);
 }

}

We specify which test classes are executed in parallel.

We enable parallel test execution for test classes and methods.

TestNG
A common way to specify parallel execution for tests in TestNG is through the con‐
figuration file testng.xml. The most relevant attributes to enable this mode in
TestNG are:

parallel

Specifies the mode for running tests in parallel. The alternatives are methods,
tests, and classes.

280 | Chapter 8: Testing Framework Specifics

threadcount

Sets the default maximum number of threads for running tests in parallel.

Example 8-32 shows a basic configuration of testng.xml for test parallelism.

Example 8-32. Parallel test configuration for TestNG

<!DOCTYPE suite SYSTEM "https://testng.org/testng-1.0.dtd">
<suite name="parallel-suite" parallel="classes" thread-count="2">
 <test name="parallel-tests">
 <classes>
 <class name=
 "io.github.bonigarcia.webdriver.testng.ch08.parallel.Parallel1NGTest"/>
 <class name=
 "io.github.bonigarcia.webdriver.testng.ch08.parallel.Parallel2NGTest"/>
 </classes>
 </test>
</suite>

We can use Maven or Gradle in the command line to run the previous parallel test
suite:

mvn test -Dsurefire.suiteXmlFiles=src/test/resources/testng.xml
gradle test -Psuite=src/test/resources/testng.xml

JUnit 5
JUnit 5 allows different ways to execute tests in parallel. The following list summari‐
zes the most relevant configuration parameters for this purpose:

junit.jupiter.execution.parallel.enabled

Boolean flag to enable test parallelism (false by default).

junit.jupiter.execution.parallel.mode.classes.default

To run test classes in parallel. The possible values are same_thread for single
threaded execution (by default) and concurrent for parallel execution.

junit.jupiter.execution.parallel.mode.default

To run test methods in parallel. The possible values are the same as before (for
test classes).

There are two ways to specify these parameters. First, in the configuration file junit-
platform.properties (that should be available in the project classpath).
Example 8-33 shows sample content of this file. Second, by using system properties
and the command line. The following commands (Maven/Gradle) show how:

mvn test -Djunit.jupiter.execution.parallel.enabled=true
gradle test -Djunit.jupiter.execution.parallel.enabled=true

Parallel Test Execution | 281

Example 8-33. Parallel test execution using JUnit 5

junit.jupiter.execution.parallel.enabled = true
junit.jupiter.execution.parallel.mode.default = same_thread
junit.jupiter.execution.parallel.mode.classes.default = same_thread

In addition, the Jupiter programming model provides the annotation @Execution to
change the parallelization mode for test classes or methods. This annotation can be
used at the class level or method level and accepts two values: ExecutionMode.CONCUR
RENT (for parallel execution) and ExecutionMode.SAME_THREAD (for single-thread
execution). Example 8-34 shows the structure of a test class contained in the example
repository. Supposing that the parallel test is enabled (as in Example 8-33), this class
will be executed in parallel together with other tests that allow parallelization.

Example 8-34. Parallel test execution using JUnit 5

@Execution(ExecutionMode.CONCURRENT)
class Parallel1JupiterTest {

 // Test logic

}

Test Listeners
A common need in the testing process is to keep track of the different stages of test
execution. Unit testing frameworks thus provide a feature known as a test listener.
Test listeners can be seen as utilities that modify the default test behavior by perform‐
ing custom actions at multiple stages of the test execution cycle. As usual, each unit
testing framework provides its own implementation for these test listeners.

JUnit 4
In JUnit 4, test listeners include custom operations when tests are started, passed, fin‐
ished, failed, skipped, or ignored. The first step for implementing a JUnit 4 listener is
to create a Java class that extends the RunListener class. In this class, you can over‐
ride several methods (e.g., testRunStarted, testIgnored, testFailure, etc.) for
including additional logic in the different steps of the test lifecycle. Example 8-35
shows basic implementation of a JUnit 4 test listener. This listener simply displays a
message in the standard output about the test stage.

282 | Chapter 8: Testing Framework Specifics

Example 8-35. Test listener using JUnit 4

public class MyTestListener extends RunListener {

 static final Logger log = getLogger(lookup().lookupClass());

 @Override
 public void testStarted(Description description) throws Exception {
 super.testStarted(description);
 log.debug("testStarted {}", description.getDisplayName());
 }

 @Override
 public void testFailure(Failure failure) throws Exception {
 super.testFailure(failure);
 log.debug("testFailure {} {}", failure.getException(),
 failure.getMessage());
 }

 // Other listeners

}

A common way to register a test listener in JUnit 4 is to create a custom runner and
use that runner in test classes. Example 8-36 shows a custom test runner registering
the previous listener. Example 8-37 shows a test skeleton using this runner.

Example 8-36. Test listeners using JUnit 4

public class MyTestRunner extends BlockJUnit4ClassRunner {

 public MyTestRunner(Class<?> clazz) throws InitializationError {
 super(clazz);
 }

 @Override
 public void run(RunNotifier notifier) {
 notifier.addListener(new MyTestListener());
 super.run(notifier);
 }
}

We extend Blockjunit4classrunner, the default test runner in JUnit 4.

We register our custom test listener.

We call the parent to continue using the default test runner.

Test Listeners | 283

Example 8-37. Test listeners using JUnit 4

@RunWith(MyTestRunner.class)
public class ListenersJUnit4Test {

 // Test logic

}

We decorate test classes using the JUnit 4 annotation @RunWith and our custom
runner.

TestNG
TestNG provides the interface ITestListener for implementing test listeners. The
classes implementing this interface can override methods for the different stages of
the TestNG lifecycle, such as onTestSuccess, onTestFailure, or onTestSkipped,
among others. Example 8-38 shows a sample class implementing this interface. In this
example, the listener methods log a message in the standard output. Example 8-39
shows a test using this listener.

Example 8-38. Test listener using TestNG

public class MyTestListener implements ITestListener {

 static final Logger log = getLogger(lookup().lookupClass());

 @Override
 public void onTestStart(ITestResult result) {
 ITestListener.super.onTestStart(result);
 log.debug("onTestStart {}", result.getName());
 }

 @Override
 public void onTestFailure(ITestResult result) {
 ITestListener.super.onTestFailure(result);
 log.debug("onTestFailure {}", result.getThrowable());
 }

 // Other listeners

}

284 | Chapter 8: Testing Framework Specifics

Example 8-39. Test listeners using TestNG

@Listeners(MyTestListener.class)
public class ListenersNGTest {

 // Test logic

}

We use the TestNG annotation @Listeners to specify that all the tests in this class
use our custom test listener.

JUnit 5
As previously discussed (see Table 8-4), Jupiter provides a wide variety of extension
points for including custom logic in the JUnit 5 test lifecycle. In addition to this
extension model, JUnit 5 allows the implementation of test listeners to keep track of
several test execution stages, such as test started, skipped, or finished. This feature is
available through the JUnit Launcher API, which is the API for discovering, filtering,
and executing tests in the JUnit Platform (see Figure 2-4).

To create a test listener in JUnit 5, we need to implement the TestExecutionListener
interface. A class implementing this interface can override different methods to be
notified of events that occur during test execution. Example 8-40 contains a basic
class implementing this interface. These kinds of listeners are registered in JUnit 5
using a standard Java service loader mechanism. For that, we need to create a file
called /META-INF/services/org.junit.platform.launcher.TestExecutionListen
er in the project classpath, and write the fully qualified name of the test listener we
want to register (e.g., io.github.bonigarcia.webdriver.jupiter.ch08.listeners
.MyTestListener for Example 8-40). Note that this file is not included in the exam‐
ples repository to avoid intruding on the whole test suite.

Example 8-40. Test listeners using JUnit 5

public class MyTestListener implements TestExecutionListener {

 static final Logger log = getLogger(lookup().lookupClass());

 @Override
 public void executionStarted(TestIdentifier testIdentifier) {
 TestExecutionListener.super.executionStarted(testIdentifier);
 log.debug("Test execution started {}", testIdentifier.getDisplayName());
 }

 @Override
 public void executionSkipped(TestIdentifier testIdentifier, String reason) {
 TestExecutionListener.super.executionSkipped(testIdentifier, reason);

Test Listeners | 285

 log.debug("Test execution skipped: {}", reason);
 }

 @Override
 public void executionFinished(TestIdentifier testIdentifier,
 TestExecutionResult testExecutionResult) {
 TestExecutionListener.super.executionFinished(testIdentifier,
 testExecutionResult);
 log.debug("Test execution finished {}",
 testExecutionResult.getStatus());
 }

}

Interface TestExecutionListener belongs to the JUnit Platform
Launcher API; therefore, to use it, we need to include this API as
an extra dependency in our project. Appendix C explains the
required Maven and Gradle setup for that.

Disabled Tests
Unit testing frameworks allow disabling (i.e., skipping in test execution) entire test
classes or individual test methods programmatically. The following subsections
explain the differences between JUnit 4, TestNG, JUnit 5, and Selenium-Jupiter.

JUnit 4
JUnit 4 provides the annotation @Ignore to disable tests. This annotation can be used
at the class or method level. Optionally, we can include a message in the annotation
to specify the reason for disabling. Example 8-41 contains a disabled test.

Example 8-41. Disabled tests using JUnit 4

@Ignore("Optional reason for disabling")
@Test
public void testDisabled() {
 // Test logic
}

TestNG
TestNG allows disabling tests in two ways. First, we can use the annotation @Ignore
for test classes or methods. Second, we can use the enabled attribute of the @Test
annotation. Example 8-42 illustrates both methods.

286 | Chapter 8: Testing Framework Specifics

Example 8-42. Disabled tests using TestNG

@Ignore("Optional reason for disabling")
@Test
public void testDisabled1() {
 // Test logic
}

@Test(enabled = false)
public void testDisabled2() {
 // Test logic
}

JUnit 5
The Jupiter programming model provides various annotations for disabling tests
based on different conditions. Table 8-5 summarizes these annotations, and
Example 8-43 provides a basic example using some of these annotations.

Table 8-5. Jupiter annotations for disabling tests

Annotation(s) Description
@Disabled To disable test class or method

@DisabledOnJre
@EnabledOnJre

To disable/enable depending on the Java version

@DisabledOnJreRange
@EnabledOnJreRange

To disable/enable depending on a range of Java versions

@DisabledOnOs
@EnabledOnOs

To disable/enable depending on the operating system (e.g., Windows, Linux,
macOS, etc.)

@DisabledIfSystemProperty
@DisabledIfSystemProperties
@EnabledIfSystemProperty
@EnabledIfSystemProperties

To disable/enable depending on the value of system properties

@DisabledIfEnvironmentVariable
@DisabledIfEnvironmentVariables
@EnabledIfEnvironmentVariable
@EnabledIfEnvironmentVariables

To disable/enable depending on the value of an environment variable

@DisabledIf
@EnabledIf

To disable/enable based on the boolean return of a custom method

Example 8-43. Disabled tests using JUnit 5

@Disabled("Optional reason for disabling")
@Test
public void testDisabled1() {
 // Test logic
}

Disabled Tests | 287

@DisabledOnJre(JAVA_8)
@Test
public void testDisabled2() {
 // Test logic
}

@EnabledOnOs(MAC)
@Test
public void testDisabled3() {
 // Test logic
}

We skip this test always.

We skip this test in the case of using Java 8.

We skip this test in any operating system different than macOS.

Selenium-Jupiter
Selenium-Jupiter provides additional annotations to disable tests conditionally
depending on specific conditions of Selenium WebDriver tests. These conditions are
browser availability, Docker availability, and URL online (i.e., it returns a 200
response code when requesting the URL with the GET HTTP method). Example 8-44
shows several tests using these annotations.

Example 8-44. Disabled tests using JUnit 5 with Selenium-Jupiter

@EnabledIfBrowserAvailable(SAFARI)
@Test
void testDisabled1(SafariDriver driver) {
 // Test logic
}

@EnabledIfDockerAvailable
@Test
void testDisabled2(@DockerBrowser(type = CHROME) WebDriver driver) {
 // Test logic
}

@EnabledIfDriverUrlOnline("http://localhost:4444/")
@Test
void testDisabled3(
 @DriverCapabilities("browserName=chrome") WebDriver driver) {
 // Test logic
}

288 | Chapter 8: Testing Framework Specifics

This test is skipped if Safari is unavailable in the system.

This test is skipped if Docker is unavailable in the system.

This test is skipped if a Selenium Server URL is not online. If so, the test is exe‐
cuted, and the previous URL is used to create an instance of RemoteWebDriver.
To specify the required capabilities, we use the annotation @DriverCapabilities
in this test (as explained in Chapter 6).

Summary and Outlook
This chapter presented some of the most relevant specific features of the testing
framework used in this book (i.e., JUnit 4, TestNG, JUnit 5, and Selenium-Jupiter) for
developing Selenium WebDriver tests. First, you learned how to implement parame‐
terized tests. This feature can be convenient for cross-browser testing (i.e., using dif‐
ferent browsers for web testing). Then, you learned how to categorize tests and use
these categories to include or exclude them from test execution. You continued by
comprehending mechanisms for failure analysis (e.g., make a browser screenshot
when a test fails), retrying tests, or executing tests in parallel. Finally, you discovered
how to implement test listeners and the different mechanisms for disabling tests.

In the next chapter, you will learn how to integrate Selenium WebDriver with differ‐
ent third-party utilities for implementing advanced end-to-end tests. You will dis‐
cover how to download files from web applications, capture traffic without using
CDP (e.g., in Firefox), test nonfunctional requirements (such as performance, secu‐
rity, or accessibility), handle different input data, improve test reporting, and inte‐
grate with existing frameworks such as Spring or Cucumber.

Summary and Outlook | 289

CHAPTER 9

Third-Party Integrations

This chapter introduces different third-party technologies (such as libraries or frame‐
works) that we can use with Selenium WebDriver. We need to use these technologies
when the Selenium WebDriver API is insufficient to carry out specific tasks. This is
the case for file downloading, in which we need to use a third-party utility to wait
until the files are correctly downloaded or, alternatively, use an HTTP client to con‐
trol the download. We also capture the HTTP traffic using a third-party proxy.

Another scenario in which we need to use external utilities with Selenium WebDriver
is when implementing nonfunctional tests, such as performance, security, accessibil‐
ity, or A/B testing. We can also use third-party libraries to develop Selenium Web‐
Driver tests using a fluent API, generate fake test data, or improve test reporting.
Finally, we can integrate relevant frameworks such as Cucumber for Behavior Driven
Development (BDD) or the Spring Framework (for developing web applications). We
will go through all of these uses in this chapter.

To use the third-party utilities presented in this chapter, you must
first include the required dependencies in your project. You can
find the details for resolving each dependency using Maven and
Gradle in Appendix C.

File Download
Selenium WebDriver has limited support for file downloading because its API does
not expose download progress. In other words, we can use Selenium WebDriver to
download files from web applications, but we cannot control the required time to
copy these files into the local file system. For this reason, we can use third-party

291

libraries to enhance the experience of web downloads with Selenium WebDriver.
There are different alternatives to this aim. The following subsections explain how.

Using Browser-Specific Capabilities
We can use browser-specific capabilities (as we did in Chapter 5) to configure several
parameters for file downloading, such as the target folder. This approach is conve‐
nient since these features are available in the Selenium WebDriver API out of the box,
but it also has several disadvantages. First, it is incompatible with different browser
types (Chrome, Firefox, etc.). In other words, the required capabilities are distinct for
individual browsers. Second, and more importantly, we do not have the control to
track download progress. To solve this problem, we need to use a third-party library.
In this book, I propose using the open source library Awaitility.

Awaitility is a popular library that provides features to handle asynchronous opera‐
tions. This way, it provides a fluent API for managing threads, timeouts, and concur‐
rency issues. In the case of downloading files with Selenium WebDriver, we use the
Awaitility API to wait until the downloaded files are stored in the file system.
Example 9-1 shows an example using Chrome and Awaitility. Example 9-2 shows the
equivalent test setup when using Firefox.

Example 9-1. Test download files using Chrome and Awaitility

class DownloadChromeJupiterTest {

 WebDriver driver;

 File targetFolder;

 @BeforeEach
 void setup() {
 targetFolder = new File(System.getProperty("user.home"), "Downloads");
 Map<String, Object> prefs = new HashMap<>();
 prefs.put("download.default_directory", targetFolder.toString());
 ChromeOptions options = new ChromeOptions();
 options.setExperimentalOption("prefs", prefs);

 driver = WebDriverManager.chromedriver().capabilities(options).create();
 }

 @AfterEach
 void teardown() {
 driver.quit();
 }

 @Test
 void testDownloadChrome() {
 driver.get(

292 | Chapter 9: Third-Party Integrations

http://www.awaitility.org

 "https://bonigarcia.dev/selenium-webdriver-java/download.html");

 driver.findElement(By.xpath("(//a)[2]")).click();
 driver.findElement(By.xpath("(//a)[3]")).click();

 ConditionFactory await = Awaitility.await()
 .atMost(Duration.ofSeconds(5));
 File wdmLogo = new File(targetFolder, "webdrivermanager.png");
 await.until(() -> wdmLogo.exists());

 File wdmDoc = new File(targetFolder, "webdrivermanager.pdf");
 await.until(() -> wdmDoc.exists());
 }

}

We specify a folder to save the downloaded files. Nevertheless, you should be
aware that Chrome allows only certain directories for download. For example, it
allows the download directory (and subfolder) but forbids employing other
paths, such as the desktop folder or the home directory.

We use a Chrome preference to specify the target folder.

We use a web page available on the practice site to download different files by
clicking on buttons (see Figure 9-1).

We click on two of the buttons available on the page. As a result, the browser
starts downloading two files: a PNG picture and a PDF document, respectively.

We use Awaitility to configure a wait timeout of five seconds.

We wait until the first file is in the file system.

We also wait until the second file is downloaded.

Example 9-2. Test setup for downloading files using Firefox

@BeforeEach
void setup() {
 FirefoxOptions options = new FirefoxOptions();
 targetFolder = new File(".");
 options.addPreference("browser.download.dir",
 targetFolder.getAbsolutePath());
 options.addPreference("browser.download.folderList", 2);
 options.addPreference("browser.helperApps.neverAsk.saveToDisk",
 "image/png, application/pdf");
 options.addPreference("pdfjs.disabled", true);

File Download | 293

 driver = WebDriverManager.firefoxdriver().capabilities(options)
 .create();
}

Firefox allows specifying any folder for downloading files. In this case, we use the
local project folder.

We use a Firefox preference to specify a custom download directory.

We need to set to 2 the preference browser.download.folderList to select a
custom download folder. The other possible values are 0 to download files into
the user desktop and 1 to use the download folder (default value).

We specify the content types that Firefox will not ask to save in the local file
system.

We disable the previsualization of PDF files.

Figure 9-1. Practice web page for downloading file

Using an HTTP Client
An alternative mechanism to download files with Selenium WebDriver is to use an
HTTP client library. I propose using Apache HttpClient, since WebDriverManager
internally uses this library, and therefore, you can use it as a transitive dependency in
your project. Example 9-3 shows a complete test case that downloads several files
with Apache HttpClient from the practice site. Notice that in this case, it is not neces‐
sary to explicitly wait until the file download finishes since Apache HttpClient han‐
dles the HTTP responses synchronously.

294 | Chapter 9: Third-Party Integrations

https://hc.apache.org/httpcomponents-client-5.1.x

Example 9-3. Test download files using an HTTP client

class DownloadHttpClientJupiterTest {

 WebDriver driver;

 @BeforeEach
 void setup() {
 driver = WebDriverManager.chromedriver().create();
 }

 @AfterEach
 void teardown() {
 driver.quit();
 }

 @Test
 void testDownloadHttpClient() throws IOException {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/download.html");

 WebElement pngLink = driver.findElement(By.xpath("(//a)[2]"));
 File pngFile = new File(".", "webdrivermanager.png");
 download(pngLink.getAttribute("href"), pngFile);
 assertThat(pngFile).exists();

 WebElement pdfLink = driver.findElement(By.xpath("(//a)[3]"));
 File pdfFile = new File(".", "webdrivermanager.pdf");
 download(pdfLink.getAttribute("href"), pdfFile);
 assertThat(pdfFile).exists();
 }

 void download(String link, File destination) throws IOException {
 try (CloseableHttpClient client = HttpClientBuilder.create().build()) {
 HttpUriRequestBase request = new HttpGet(link);
 try (CloseableHttpResponse response = client.execute(request)) {
 FileUtils.copyInputStreamToFile(
 response.getEntity().getContent(), destination);
 }
 }
 }

}

We use the practice web page again for downloading files.

We click on a button to download a file.

We refactor the common logic for downloading files in the class method
download.

File Download | 295

We repeat the operation for a second file to be downloaded.

We create an Apache HTTPClient instance inside a try-with-resources. This cli‐
ent is automatically closed at the end of the statement scope.

We use another try-with-resources statement to send an HTTP request to the
provided URL and, as a result, get an HTTP response.

We copy the resulting file in the local file system.

Capture Network Traffic
“Network monitoring” on page 182 and “Network interceptor” on page 178 explain
how to use browser-specific capabilities to capture the HTTP traffic between Sele‐
nium WebDriver and the web application under test. The drawback of this mecha‐
nism is that it is only available in browsers that support CDP. Nevertheless, we can
use a third-party proxy for other browsers. In this book, I propose you use Browser‐
Mob proxy for this purpose.

BrowserMob is an open source proxy that allows manipulating HTTP traffic using a
Java library. Example 9-4 shows a complete test using this proxy in a Selenium Web‐
Driver test. In this example, we use the BrowserMob proxy to intercept the HTTP
traffic between the test and the target website, tracing this traffic (request-response)
as logging traces.

Example 9-4. Test capturing network traffic through BrowserMob proxy

class CaptureNetworkTrafficFirefoxJupiterTest {

 static final Logger log = getLogger(lookup().lookupClass());

 WebDriver driver;

 BrowserMobProxy proxy;

 @BeforeEach
 void setup() {
 proxy = new BrowserMobProxyServer();
 proxy.start();
 proxy.newHar();
 proxy.enableHarCaptureTypes(CaptureType.REQUEST_CONTENT,
 CaptureType.RESPONSE_CONTENT);

 Proxy seleniumProxy = ClientUtil.createSeleniumProxy(proxy);
 FirefoxOptions options = new FirefoxOptions();
 options.setProxy(seleniumProxy);
 options.setAcceptInsecureCerts(true);

296 | Chapter 9: Third-Party Integrations

https://bmp.lightbody.net
https://bmp.lightbody.net

 driver = WebDriverManager.firefoxdriver().capabilities(options)
 .create();
 }

 @AfterEach
 void teardown() {
 proxy.stop();
 driver.quit();
 }

 @Test
 void testCaptureNetworkTrafficFirefox() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getTitle()).contains("Selenium WebDriver");

 List<HarEntry> logEntries = proxy.getHar().getLog().getEntries();
 logEntries.forEach(logEntry -> {
 log.debug("Request: {} - Response: {}",
 logEntry.getRequest().getUrl(),
 logEntry.getResponse().getStatus());
 });
 }

}

We create an instance of a BrowserMob.

We start this proxy.

We capture the HTTP traffic using HAR (HTTP Archive), a JSON-based file for‐
mat used to capture and export this traffic.

We enable capturing the exchanged HTTP requests and responses.

We transform the BrowserMob server into a Selenium WebDriver proxy.

We set this proxy as a browser option (in this case, for Firefox).

We need to allow insecure certificates since the communication with the proxy is
done using HTTP (and not HTTPS).

We stop the proxy after the test.

We use the proxy instance to gather the HTTP traffic (requests and responses).
We use a logger to write this information in the standard output in this basic
example.

Capture Network Traffic | 297

Nonfunctional Testing
As explained in Chapter 1, Selenium WebDriver is primarily used to assess the func‐
tional requirements of web applications. In other words, testers use the Selenium
WebDriver API to verify that a web application under test behaves as expected. Nev‐
ertheless, we can leverage this API to test nonfunctional requirements, i.e., quality
attributes such as performance, security, accessibility, etc. A common strategy to
accomplish this goal is to integrate with specific third-party utilities. The following
subsections explain different integrations with Selenium WebDriver for nonfunc‐
tional testing.

Performance
Performance testing evaluates the responsiveness and stability of a SUT under a par‐
ticular workload. Instead of Selenium WebDriver, testers usually adopt specific tools
like Apache JMeter for performance testing. Apache JMeter is an open source tool
that allows sending multiple HTTP requests to a given URL endpoint while measur‐
ing the response time and other metrics. Although the direct integration between
Selenium WebDriver and Apache JMeter is not trivial, we can leverage an existing
Selenium WebDriver test as a JMeter test plan (i.e., the series of steps that JMeter exe‐
cutes). The benefit of this approach is that the resulting JMeter test plan will mimic
the same user workflow used in the Selenium WebDriver test, reusing the same
HTTP traffic the browser makes (e.g., for JavaScript libraries, CSS, etc.). To that aim, I
propose the following procedure:

1. Use the BrowserMob proxy (introduced in the previous section) to capture the
exchanged network traffic in Selenium WebDriver as a HAR file.

2. Convert the resulting HAR file to a JMeter test plan. Test plans in JMeter are
stored as XML-based files with the extension JMX.

3. Load the JMX test plan in JMeter and tune it for simulating concurrent users and
including result listeners

4. Run the test plan and evaluate the results.

Example 9-5 shows a complete test case that implements the first step. As you can see,
the required login to start and create the HAR file is done before and after each test.
You can use this approach to leverage existing functional tests (i.e., the logic in the
@Test methods) as performance tests (to be executed in JMeter).

298 | Chapter 9: Third-Party Integrations

https://jmeter.apache.org

Example 9-5. Test creating a HAR file

class HarCreatorJupiterTest {

 WebDriver driver;

 BrowserMobProxy proxy;

 @BeforeEach
 void setup() {
 proxy = new BrowserMobProxyServer();
 proxy.start();
 proxy.newHar();
 proxy.enableHarCaptureTypes(CaptureType.REQUEST_CONTENT,
 CaptureType.RESPONSE_CONTENT);

 Proxy seleniumProxy = ClientUtil.createSeleniumProxy(proxy);
 ChromeOptions options = new ChromeOptions();
 options.setProxy(seleniumProxy);
 options.setAcceptInsecureCerts(true);

 driver = WebDriverManager.chromedriver().capabilities(options).create();
 }

 @AfterEach
 void teardown() throws IOException {
 Har har = proxy.getHar();
 File harFile = new File("login.har");
 har.writeTo(harFile);

 proxy.stop();
 driver.quit();
 }

 @Test
 void testHarCreator() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/login-form.html");

 driver.findElement(By.id("username")).sendKeys("user");
 driver.findElement(By.id("password")).sendKeys("user");
 driver.findElement(By.cssSelector("button")).click();
 String bodyText = driver.findElement(By.tagName("body")).getText();
 assertThat(bodyText).contains("Login successful");
 }

}

We start BrowserMob before the test and configure it in the WebDriver session.

We get the HAR file after the test and write it as a local file.

Nonfunctional Testing | 299

After running the previous test, we get a HAR file called login.har. Now, we need to
convert it to a JMeter test plan. There are different alternatives to do that. You can
find several programs (e.g., in Ruby or Java) that make this job freely available on the
web. Also, you can use online converters services, such as the BlazeMeter JMX Con‐
verter. In this example, I use this online service and open the resulting JMX test plan
in JMeter. At this point, you can tune the JMeter configuration at your convenience
(you can find further information about JMeter in its official user manual). For
instance, Figure 9-2 shows the JMeter GUI after loading the resulting JMX test plan
plus the following changes:

• Increase the number of concurrent users to one hundred (in the “Thread Group”
tab)

• Include some result listeners, such as “Aggregate Graph” and “Graph Results

Figure 9-2. JMeter GUI loading the resulting test plan

Now, we can run the test plan with JMeter (for example, clicking on the button with a
green triangle in the JMeter GUI). As a result, a load of one hundred concurrent users
is generated following the interactions initially developed as a Selenium WebDriver
test (Example 9-5). Figure 9-3 shows the results for the previously added listeners.

300 | Chapter 9: Third-Party Integrations

https://converter.blazemeter.com
https://converter.blazemeter.com
https://jmeter.apache.org/usermanual/index.html

Figure 9-3. JMeter results

Using browsers to generate the load
Using tools like JMeter is convenient for many performance testing scenarios for web
applications. Nevertheless, this approach is unsuitable when you need actual browsers
to recreate the complete user workflow (e.g., in videoconferencing web apps). In that
case, a possible solution is to use WebDriverManager in conjunction with Docker.
Example 9-6 demonstrates this use. As you can see in this test, WebDriverManager
allows creating a list of WebDriver instances simply by specifying the size as a param‐
eter in the create() method. Then, for example, we can use standard Java to exercise
the web application under test in parallel using a thread pool.

Nonfunctional Testing | 301

Example 9-6. Load test using WebDriverManager and Docker

class LoadJupiterTest {

 static final int NUM_BROWSERS = 5;

 final Logger log = getLogger(lookup().lookupClass());

 List<WebDriver> driverList;

 WebDriverManager wdm = WebDriverManager.chromedriver().browserInDocker();

 @BeforeEach
 void setupTest() {
 assumeThat(isDockerAvailable()).isTrue();
 driverList = wdm.create(NUM_BROWSERS);
 }

 @AfterEach
 void teardown() {
 wdm.quit();
 }

 @Test
 void testLoad() throws InterruptedException {
 ExecutorService executorService = newFixedThreadPool(NUM_BROWSERS);
 CountDownLatch latch = new CountDownLatch(NUM_BROWSERS);

 driverList.forEach((driver) -> {
 executorService.submit(() -> {
 try {
 checkHomePage(driver);
 } finally {
 latch.countDown();
 }
 });
 });

 latch.await(60, SECONDS);
 executorService.shutdown();
 }

 void checkHomePage(WebDriver driver) {
 log.debug("Session id {}", ((RemoteWebDriver) driver).getSessionId());
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getTitle()).contains("Selenium WebDriver");
 }

}

302 | Chapter 9: Third-Party Integrations

We create an instance of the Chrome manager, using Docker to execute the
browsers as containers.

We assume that Docker is installed in the machine running this test. Otherwise,
the test is skipped.

We create a WebDriver list (containing five instances in this example).

We create a thread pool using the same size as the WebDriver list.

We use the thread pool to execute in parallel the SUT assessment.

We wait until each parallel evaluation finishes. We use a synchronization method
based on a counter latch to do that.

Security
A relevant organization in the software security domain is OWASP (Open Web
Application Security Project), a nonprofit foundation that promotes open solutions to
improve software security. One of the most popular OWASP projects is the Zed
Attack Proxy (ZAP). OWASP ZAP is an open source web application security scanner
used to implement vulnerability assessment (i.e., look for security issues) or penetra‐
tion testing (i.e., a simulated cyberattack) to find exploitable web application
vulnerabilities.

We can use OWASP ZAP as a standalone desktop application. Figure 9-4 shows a
screenshot of its GUI.

Figure 9-4. OWASP ZAP GUI

Nonfunctional Testing | 303

https://owasp.org
https://www.zaproxy.org

This GUI provides different features for automated scans to detect security threats
that a web application might face, such as SQL injection, cross-site scripting (XSS), or
cross-site request forgery (CSRF), to name a few.

In addition to the standalone application, we can integrate a Selenium WebDriver test
with ZAP. Example 9-7 provides a test case illustrating this integration. The steps
required to execute this test properly are:

1. Start OWAS ZAP in the localhost. By default, OWASP starts a proxy that listens
to port 8080. You can change this port using the OWASP GUI using the menu
option Tools → Options → Local Proxies.

2. Disable the API key (or copy its value in the Selenium WebDriver test). You can
change this value in the menu option Tools → Options → API.

3. Implement a Selenium WebDriver test that uses OWASP ZAP as a proxy (like
Example 9-7).

4. Execute the Selenium WebDriver test. At this point, you should see the generated
vulnerability report in the ZAP GUI.

Example 9-7. Test using OWASP ZAP as security scanner

class SecurityJupiterTest {

 static final Logger log = getLogger(lookup().lookupClass());

 static final String ZAP_PROXY_ADDRESS = "localhost";
 static final int ZAP_PROXY_PORT = 8080;
 static final String ZAP_API_KEY = "<put-api-key-here-or-disable-it>";

 WebDriver driver;

 ClientApi api;

 @BeforeEach
 void setup() {
 String proxyStr = ZAP_PROXY_ADDRESS + ":" + ZAP_PROXY_PORT;
 assumeThat(isOnline("http://" + proxyStr)).isTrue();

 Proxy proxy = new Proxy();
 proxy.setHttpProxy(proxyStr);
 proxy.setSslProxy(proxyStr);

 ChromeOptions options = new ChromeOptions();
 options.setAcceptInsecureCerts(true);
 options.setProxy(proxy);

 driver = WebDriverManager.chromedriver().capabilities(options).create();

304 | Chapter 9: Third-Party Integrations

 api = new ClientApi(ZAP_PROXY_ADDRESS, ZAP_PROXY_PORT, ZAP_API_KEY);
 }

 @AfterEach
 void teardown() throws ClientApiException {
 if (api != null) {
 String title = "My ZAP report";
 String template = "traditional-html";
 String description = "This is a sample report";
 String reportfilename = "zap-report.html";
 String targetFolder = new File("").getAbsolutePath();
 ApiResponse response = api.reports.generate(title, template, null,
 description, null, null, null, null, null, reportfilename,
 null, targetFolder, null);
 log.debug("ZAP report generated at {}", response.toString());
 }
 if (driver != null) {
 driver.quit();
 }
 }

 @Test
 void testSecurity() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/web-form.html");
 assertThat(driver.getTitle()).contains("Selenium WebDriver");
 }

}

We configure the address and port where the ZAP local proxy is listening.

If the ZAP API key is not disabled, we need to set its value here.

We configure ZAP as a Selenium WebDriver proxy.

We interact with ZAP using its API.

After the test, we create an HTML report with vulnerabilities found during the
execution of the Selenium WebDriver test. Figure 9-5 shows a screenshot of this
report.

We can also use OWASP ZAP as a standalone GUI, as introduced
previously. The potential benefit of the integration with Selenium
WebDriver could be reusing existing functional tests for assessing
security or automated security assessment (e.g., a regression test
suite executed by a CI server).

Nonfunctional Testing | 305

Figure 9-5. Report generated by ZAP after executing a Selenium WebDriver test

Accessibility
Digital accessibility refers to the ability of users with disabilities to effectively use soft‐
ware systems such as websites, mobile apps, etc. An essential reference in this domain
is the Web Content Accessibility Guidelines (WCAG), which are a set of standard rec‐
ommendations created by the W3C Web Accessibility Initiative (WAI) that explain
how to make web content more accessible to people with disabilities.

There are several methods to test the accessibility of web applications. The most com‐
mon approach consists of checking the WCAG recommendations. To that aim, we
can use automated accessibility scanners like Axe, an open source engine for automa‐
ted accessibility testing of web applications following WCAG rules. Axe provides
seamless integration with the Java bindings of Selenium WebDriver using a helper
library. Example 9-8 shows a test using this library.

Example 9-8. Test using Axe to generate an accessibility report

@Test
void testAccessibility() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getTitle()).contains("Selenium WebDriver");

 Results result = new AxeBuilder().analyze(driver);

306 | Chapter 9: Third-Party Integrations

https://www.w3.org/WAI/standards-guidelines/wcag
https://www.w3.org/WAI
https://www.deque.com/axe
https://github.com/dequelabs/axe-core-maven-html
https://github.com/dequelabs/axe-core-maven-html

 List<Rule> violations = result.getViolations();
 violations.forEach(rule -> {
 log.debug("{}", rule.toString());
 });
 AxeReporter.writeResultsToJsonFile("testAccessibility", result);
}

We analyze the current WebDriver session with Axe. This way, all pages loaded in
the browser will be scanned by Axe.

We get a report of the accessibility violations found.

We log each violation in the standard output. In this example, the found issues
are:

color-contrast
Elements must have sufficient color contrast.

heading-order
Heading levels should only increase by one.

image-alt
Images must have alternate text.

link-name
Links must have discernible text.

We write the results as a local JSON file.

A/B Testing
A/B testing is a form of usability evaluation that compares variations of the same
application to discover which one is more effective to its end users. Different com‐
mercial products facilitate advanced features for A/B tests in Selenium WebDriver
tests. For example, Applitools Eyes provides an automated visual comparison of mul‐
tiple web page variations. Another option is Optimizely, a company that provides
tools for customizing and experimenting with A/B testing.

Another way to carry out A/B testing is to use the vanilla Selenium WebDriver API
and custom conditions for the different variations of a web page. Example 9-9 shows
a basic test following a manual approach for a multivariant web page. Notice that this
test shows a simple way to implement an A/B test based on assessing the different
page variations.

Nonfunctional Testing | 307

https://applitools.com/products-eyes
https://www.optimizely.com

Example 9-9. Basic A/B test using Selenium WebDriver

@Test
void testABTesting() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/ab-testing.html");
 WebDriverWait wait = new WebDriverWait(driver, Duration.ofSeconds(10));
 WebElement header = wait.until(
 ExpectedConditions.presenceOfElementLocated(By.tagName("h6")));

 if (header.getText().contains("variation A")) {
 assertBodyContains(driver, "Lorem ipsum");
 } else if (header.getText().contains("variation B")) {
 assertBodyContains(driver, "Nibh netus");
 } else {
 fail("Unknown variation");
 }
}

void assertBodyContains(WebDriver driver, String text) {
 String bodyText = driver.findElement(By.tagName("body")).getText();
 assertThat(bodyText).contains(text);
}

We open a multivariant practice web page. The content of this page is randomly
loaded 50% of the time.

We check the page variations are as expected.

Fluent API
As introduced in Chapter 1, Selenium is the foundation technology for other frame‐
works and libraries. For instance, we can find several libraries wrapping Selenium
WebDriver to expose a fluent API for creating end-to-end tests for web applications.
An example of this kind of library is Selenide, an open source (MIT license) library
that defines a concise fluent API on top of Selenium WebDriver. Selenide provides
several benefits, such as automated waiting for web elements or support for AJAX
applications.

A relevant difference of a Selenide test compared to Selenium WebDriver is that Sele‐
nide handles the WebDriver objects internally. For that, it uses WebDriverManager to
resolve the required driver (e.g., chromedriver, geckodriver, etc.), holding the Web
Driver instance in a separate thread that is closed at the end of the test. As a result,
the required test boilerplate related to the creation and termination of WebDriver
objects is not required. Example 9-10 demonstrates this feature by showing a basic
Selenide test.

308 | Chapter 9: Third-Party Integrations

https://selenide.org

Example 9-10. Test using Selenide

class SelenideJupiterTest {

 @Test
 void testSelenide() {
 open("https://bonigarcia.dev/selenium-webdriver-java/login-form.html");

 $(By.id("username")).val("user");
 $(By.id("password")).val("user");
 $("button").pressEnter();
 $(By.id("success")).shouldBe(visible)
 .shouldHave(text("Login successful"));
 }

}

We use the static method open provided by Selenide to navigate a given URL. By
default, Selenide uses a local Chrome, although the browser can be changed
using a configuration class (e.g., Configuration.browser = "firefox";) or
using a Java system property (e.g., -Dselenide.browser=firefox).

The Selenide method $ allows you to locate web elements by CSS selector or
using Selenium WebDriver By locators. This line of code uses the latter to type
text into an input field.

We locate another web element, this time by CSS selector, and click on it.

We verify that the web element for successful login is present on the page and
contains the expected text.

Test Data
A relevant part of any test case is the test data, i.e., the input data used to exercise the
SUT. The selection of suitable test data is paramount for implementing effective tests.
Differing techniques in classic testing theory for test data selection include:

Equivalence partitioning
The process of testing by dividing all possible input test data into value sets that
we assume to be processed in the same way.

Boundary testing
The process of testing between extreme ends or between partitions of the input
values. The basic idea of this approach is to select the representative limit values
in an input domain (for example, below the minimum, minimum, just above the

Test Data | 309

minimum, nominal, just below the maximum, maximum, and above the maxi‐
mum value).

These approaches can be impractical in end-to-end testing since the required number
of tests (and the resulting execution time) to carry out these strategies can be enor‐
mous. Alternatively, we typically select some representative test data manually to ver‐
ify the happy path (i.e., positive testing), and optionally, some test data for unexpected
conditions (negative testing).

Another alternative for selecting test data is using fake data, i.e., random data of dif‐
ferent domains, such as personal names, surnames, addresses, countries, emails,
phone numbers, etc. A simple alternative to this aim is using Java Faker, a port of the
popular faker Ruby gem. Example 9-11 shows a test using this library. This test uses
fake data to submit a web form available on the practice site. Figure 9-6 shows this
web page after submitting the form with that fake data.

Example 9-11. Test using Java Faker to generate different types of fake data

@Test
void testFakeData() {
 driver.get(
 "https://bonigarcia.dev/selenium-webdriver-java/data-types.html");

 Faker faker = new Faker();

 driver.findElement(By.name("first-name"))
 .sendKeys(faker.name().firstName());
 driver.findElement(By.name("last-name"))
 .sendKeys(faker.name().lastName());
 driver.findElement(By.name("address"))
 .sendKeys(faker.address().fullAddress());
 driver.findElement(By.name("zip-code"))
 .sendKeys(faker.address().zipCode());
 driver.findElement(By.name("city")).sendKeys(faker.address().city());
 driver.findElement(By.name("country"))
 .sendKeys(faker.address().country());
 driver.findElement(By.name("e-mail"))
 .sendKeys(faker.internet().emailAddress());
 driver.findElement(By.name("phone"))
 .sendKeys(faker.phoneNumber().phoneNumber());
 driver.findElement(By.name("job-position"))
 .sendKeys(faker.job().position());
 driver.findElement(By.name("company")).sendKeys(faker.company().name());

 driver.findElement(By.tagName("form")).submit();

 List<WebElement> successElement = driver
 .findElements(By.className("alert-success"));
 assertThat(successElement).hasSize(10);

310 | Chapter 9: Third-Party Integrations

https://dius.github.io/java-faker
https://github.com/faker-ruby/faker

 List<WebElement> errorElement = driver
 .findElements(By.className("alert-danger"));
 assertThat(errorElement).isEmpty();
}

We create an instance of Java Faker.

We send random data of different types (name, address, country, etc.).

We verify that the data is submitted correctly.

We check there are no errors on the page.

Figure 9-6. Practice page using fake data

Test Data | 311

Reporting
A test report is a document that summarizes the results after executing a test suite.
This document typically contains the number of tests executed plus their verdicts
(pass, fail, skip) and execution time. There are different ways to obtain a test report in
our Java project. For example, when using Maven, we can create a basic test report
using the following commands:

mvn test
mvn surefire-report:report-only
mvn site -DgenerateReports=false

We execute the test with Maven. As a result, the Maven Surefire plug-in gener‐
ated a set of XML files in the target folder. These files contain the results of the
test execution.

We convert the XML reports into an HTML report. You can find this HTML
report in your project folder target/site.

We force a copy of the CSS and images required in the HTML report. Figure 9-7
shows a screenshot of this report.

Figure 9-7. Test report generated with Maven

We can also generate an equivalent report using Gradle. After executing a test suite
with this build tool, Gradle automatically generates an HTML report in the folder

312 | Chapter 9: Third-Party Integrations

build/reports. Figure 9-8 shows an example of the test report generated for execut‐
ing a group of tests (using the shell command gradle test --tests Hello*).

Figure 9-8. Test report generated with Gradle

In addition to Maven and Gradle, we can use existing reporting libraries to create
richer reports. A possible alternative is Extent Reports, a library to create interactive
test reports. Extent Reports provides professional (commercial) and community
(open source) editions. Example 9-12 shows a test using the latter.

Example 9-12. Test using Extent Reports to generate an HTML report

class ReportingJupiterTest {

 WebDriver driver;

 static ExtentReports reports;

 @BeforeAll
 static void setupClass() {
 reports = new ExtentReports();
 ExtentSparkReporter htmlReporter = new ExtentSparkReporter(
 "extentReport.html");
 reports.attachReporter(htmlReporter);
 }

 @BeforeEach
 void setup(TestInfo testInfo) {
 reports.createTest(testInfo.getDisplayName());
 driver = WebDriverManager.chromedriver().create();
 }

Reporting | 313

https://www.extentreports.com

 @AfterEach
 void teardown() {
 driver.quit();
 }

 @AfterAll
 static void teardownClass() {
 reports.flush();
 }

 // Test methods

}

We create an instance of the test reporter.

We configure it to generate an HTML report.

After each test, we create an entry in the test report using the test name as an
identifier. In JUnit 5, we use TestInfo, a built-in parameter resolver that allows
retrieving information about the current test.

As usual, you can find the complete source code in the examples repository. In
particular, this class has two test methods. Figure 9-9 shows the resulting test
report generated when this test class is executed.

Figure 9-9. Test report generated with Extent Reports

314 | Chapter 9: Third-Party Integrations

https://github.com/bonigarcia/selenium-webdriver-java

An inconvenience of Extent Reports is that we need to add each test explicitly to the
reporter. A possible solution to this problem is using custom test listeners (as
explained in “Test Listeners” on page 282) to group the common logic for reporting.

Another possible library for generating rich test reports is Allure, an open source
reporting framework for generating test reports for different programming lan‐
guages, including Java, Python, and JavaScript, among others. A notable difference
between Allure and Extent Reports is that Allure uses a test listener configured in the
build tool Maven or Gradle (see Appendix C for further details about this configura‐
tion). This way, we did not need to change our test suite for generating Allure reports.
Table 9-1 summarizes the necessary commands to create Allure reports with Maven
and Gradle.

Table 9-1. Maven and Gradle commands to generate test reports with Allure

Maven Gradle Description
mvn test
mvn allure:report
mvn allure:serve

gradle test
gradle allureReport
gradle allureServe

Run test cases
Create the reports on the target folder
Open the HTML report using a local web server (as shown in
Figure 9-10)

Figure 9-10. Test report generated with Allure and served locally

Reporting | 315

http://allure.qatools.ru

Behavior Driven Development
As introduced in Chapter 1, Behavior Driven Development (BDD) is a software
methodology that promotes the development and testing of software systems using
high-level user scenarios. Different tools implement the BDD methodology. One of
the most popular is Cucumber. Cucumber executes tests based on user stories written
in Gherkin, a human-readable notation based on natural languages (e.g., English and
others). Gherkin was designed to be used by nonprogrammers (e.g., customers or end
users), and its main keywords are listed next (see the Gherkin user manual for further
information):

Feature
High-level description of the software feature tested.

Scenario
Concrete test that illustrates a business rule. Scenarios describe different pieces of
information (called steps in the Gherkin jargon), such as:

Given
Preconditions and initial state

When
User actions

And
Additional user actions

Then
Expected outcome

Example 9-13 shows a Gherkin feature containing two scenarios for a test login (suc‐
cessful and failed).

Example 9-13. Gherkin scenarios for login into the practice site

Feature: Login in practice site

 Scenario: Successful login
 Given I use "Chrome"
 When I navigate to
 "https://bonigarcia.dev/selenium-webdriver-java/login-form.html"
 And I log in with the username "user" and password "user"
 And I click Submit
 Then I should see the message "Login successful"

 Scenario: Failure login
 Given I use "Chrome"
 When I navigate to

316 | Chapter 9: Third-Party Integrations

https://cucumber.io
https://cucumber.io/docs/gherkin

 "https://bonigarcia.dev/selenium-webdriver-java/login-form.html"
 And I log in with the username "bad-user" and password "bad-password"
 And I click Submit
 Then I should see the message "Invalid credentials"

Feature description

First scenario (login successful)

Browser to be used

Web page URL

Set of actions (type credentials and click the Submit button)

Expected message

Second scenario (login failed)

To run Gherkin scenarios as test cases, we must first create the corresponding step
definitions. A step definition is a glue code that exercises the SUT using the informa‐
tion specified in the scenario. In Java, we use annotations (such as @Given, @Then,
@When, or @And) to decorate methods implementing each step. These annotations con‐
tain a string value to map each step definition and the parameters. Example 9-14
shows a step definition for the Gherkin scenario defined on Example 9-13. We use the
Selenium WebDriver API to implement the required actions for navigation, web ele‐
ment interaction, etc.

Example 9-14. Steps to log in to the practice site with Cucumber

public class LoginSteps {

 private WebDriver driver;

 @Given("I use {string}")
 public void iUse(String browser) {
 driver = WebDriverManager.getInstance(browser).create();
 }

 @When("I navigate to {string}")
 public void iNavigateTo(String url) {
 driver.get(url);
 }

 @And("I log in with the username {string} and password {string}")
 public void iLogin(String username, String password) {
 driver.findElement(By.id("username")).sendKeys(username);

Behavior Driven Development | 317

 driver.findElement(By.id("password")).sendKeys(password);

 }

 @And("I click Submit")
 public void iPressEnter() {
 driver.findElement(By.cssSelector("button")).click();
 }

 @Then("I should see the message {string}")
 public void iShouldSee(String result) {
 try {
 String bodyText = driver.findElement(By.tagName("body")).getText();
 assertThat(bodyText).contains(result);
 } finally {
 driver.quit();
 }
 }

}

We use the first step to create a WebDriver instance.

We open the URL.

We type the credentials.

We click on the Submit button.

We verify that the expected message is on the page.

Finally, we need to run our step definition as a test case. As usual, we create that test
using a unit testing framework. This test is unit testing framework-dependent in the
integration with Cucumber. In other words, the required code is different in JUnit 4
(see Example 9-15), JUnit 5 (see Example 9-16), and TestNG (see Example 9-17). The
resulting tests are executed in the usual way (i.e., using the shell or an IDE).

Selenium-Jupiter does not provide any additional features for inte‐
grating with Cucumber, so the default JUnit 5 procedure is the
same in the Selenium-Jupiter project in the examples repository.

318 | Chapter 9: Third-Party Integrations

Example 9-15. Cucumber test using JUnit 4

@RunWith(Cucumber.class)
@CucumberOptions(features = "classpath:io/github/bonigarcia", glue = {
 "io.github.bonigarcia" })
public class CucumberTest {

}

We use the Cucumber runner to execute the step definitions as test cases.

We specify the location of the Gherkin scenarios. In this case, the feature is the
folder io/github/bonigarcia in the project classpath (concretely, in the src/
test/resources folder). This annotation also specified the initial package to
search the glue code (i.e., the steps definition).

Example 9-16. Cucumber test using JUnit 5

@Suite
@IncludeEngines("cucumber")
@SelectClasspathResource("io/github/bonigarcia")
@ConfigurationParameter(key = GLUE_PROPERTY_NAME, value = "io.github.bonigarcia")
public class CucumberTest {

}

We need to use the JUnit 5 suite module to run Cucumber tests.

We include the Cucumber engine in the JUnit Platform.

We specify the path for features within the project classpath.

We set the initial package to search the glue code.

Example 9-17. Cucumber test using TestNG

@CucumberOptions(features = "classpath:io/github/bonigarcia", glue = {
 "io.github.bonigarcia" })
public class CucumberTest extends AbstractTestNGCucumberTests {

}

We specify the location of the Gherkin scenarios and the package to search the
glue code.

We extend a TestNG parent test class for Cucumber tests.

Behavior Driven Development | 319

Web Frameworks
Web frameworks are software frameworks designed to support the development of
web applications and services. One of the most popular frameworks for the Java lan‐
guage is the Spring Framework. Spring is an open source framework for building Java
applications, including enterprise web applications and services. The core technology
of Spring is known as Inversion of Control (IoC), which is a procedure to create
instances outside the class in which these objects are used. These objects, called beans
or components in the Spring jargon, are later injected on demand as dependencies by
the Spring IoC container.

The following examples show basic tests that verify a local web application created
with Spring-Boot, a subproject of the Spring portfolio that simplifies the development
of Spring-based applications thanks to convention over configuration and autodis‐
covery features. In addition, Spring-Boot provides an embedded web server to ease
the development of web applications. The integration with Selenium WebDriver in
this kind of project facilitates the testing process of Spring-based web applications by
deploying automatically in the embedded web server per test case.

The code to integrate Spring-Boot with Selenium WebDriver and the unit testing
frameworks used in this book is different. Example 9-18 shows a test integrating
Spring-Boot and JUnit 4. Example 9-19 shows the differences when using TestNG,
Example 9-20 illustrates how to use JUnit 5, and finally, Example 9-21 shows a Spring
test based on JUnit 5 with Selenium-Jupiter.

Example 9-18. Test using Spring-Boot and JUnit 4

@RunWith(SpringRunner.class)
@SpringBootTest(classes = SpringBootDemoApp.class,
 webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class SpringBootJUnit4Test {

 private WebDriver driver;

 @LocalServerPort
 protected int serverPort;

 @Before
 public void setup() {
 driver = WebDriverManager.chromedriver().create();
 }

 @After
 public void teardown() {
 driver.quit();
 }

320 | Chapter 9: Third-Party Integrations

https://spring.io
https://spring.io/projects/spring-boot

 @Test
 public void testSpringBoot() {
 driver.get("http://localhost:" + serverPort);
 String bodyText = driver.findElement(By.tagName("body")).getText();
 assertThat(bodyText)
 .contains("This is a local site served by Spring-Boot");
 }

}

We use the Spring runner in JUnit 4.

We use a Spring-Boot annotation for tests to define the Spring-Boot class name.
Also, we specify the web application is deployed using a random available port.

We inject the web application port as a class attribute.

Example 9-19. Test using Spring-Boot and TestNG

@SpringBootTest(classes = SpringBootDemoApp.class,
 webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
public class SpringBootNGTest extends AbstractTestNGSpringContextTests {

 // Same logic as the previous test

}

We use the annotation @SpringBootTest in the same way in JUnit 4.

We extend a TestNG parent to run this test using the Spring context.

Example 9-20. Test using Spring-Boot and JUnit 5

@ExtendWith(SpringExtension.class)
@SpringBootTest(classes = SpringBootDemoApp.class,
 webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
class SpringBootJupiterTest {

 // Same logic as the previous test

}

We use the JUnit 5 Spring extension to integrate the Spring context in a Jupiter
test.

We use Spring-Boot to start our Spring application context as in the previous
examples.

Web Frameworks | 321

Example 9-21. Test using Spring-Boot and JUnit 5 plus Selenium-Jupiter

@ExtendWith({ SeleniumJupiter.class, SpringExtension.class })
@SpringBootTest(classes = SpringBootDemoApp.class,
 webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
class SpringBootSelJupTest {

 @LocalServerPort
 protected int serverPort;

 @Test
 void testSpringBoot(ChromeDriver driver) {
 driver.get("http://localhost:" + serverPort);
 String bodyText = driver.findElement(By.tagName("body")).getText();
 assertThat(bodyText)
 .contains("This is a local site served by Spring-Boot");
 }

}

In the case of Selenium-Jupiter, we use two JUnit 5 extensions (for Spring and
Selenium WebDriver).

As usual in Selenium-Jupiter, we use the JUnit 5 parameter resolution mecha‐
nism to declare the type of WebDriver instance we use in this test.

Summary and Outlook
This chapter provided a practical overview for integrating different technologies
(such as tools, libraries, and frameworks) in the development of end-to-end tests for
web applications with Selenium WebDriver. First, we used Awaitility (a library to
handle asynchronous operations) for waiting until files are downloaded with Sele‐
nium WebDriver. An alternative library to execute the same use case (i.e., download‐
ing files) is Apache HttpClient. Then, we used the BrowserMob proxy to intercept the
HTTP traffic exchanged by a Selenium WebDriver test. The next group of technolo‐
gies focused on enabling nonfunctional testing with Selenium WebDriver: Browser‐
Mob (to create a JMeter test plan for performance testing), OWASP ZAP (for security
testing), and Axe (for accessibility testing). Then, we used the fluent API provided by
Selenide, Java Faker, to create fake test data for Selenium WebDriver tests, and Extent
Reports and Allure to generate rich test reports. Finally, we discovered how to inte‐
grate Cucumber (a BDD framework) and Spring (a Java and web framework) with
Selenium WebDriver.

322 | Chapter 9: Third-Party Integrations

The next chapter concludes this book by presenting complementary frameworks
to Selenium WebDriver, namely REST Assured (for testing REST services) and
Appium (for testing mobile applications). Finally, the chapter presents several popu‐
lar alternatives to Selenium WebDriver in the browser automation space: Cypress,
WebDriverIO, TestCafe, Puppeteer, and Playwright.

Summary and Outlook | 323

CHAPTER 10

Beyond Selenium

This chapter closes this book by presenting several complementary technologies to
Selenium. First, we analyze the basics of mobile apps and introduce Appium, a popu‐
lar testing framework for mobile testing. Then, you will learn how to test REST (REp‐
resentational State Transfer) services with an open source Java library called REST
Assured. Finally, you will be introduced to alternative tools to Selenium WebDriver
for implementing end-to-end tests for web applications, namely: Cypress, WebDri‐
verIO, TestCafe, Puppeteer, and Playwright.

Mobile Apps
Mobile applications (usually called mobile apps, or simply apps) are software applica‐
tions designed to run on mobile devices, such as smartphones, tablets, or wearables.
There are two principal operating systems for mobile devices:

Android
An open source (Apache 2.0 license) mobile operating system based on a modi‐
fied version of Linux. It was initially developed by a startup named Android,
acquired by Google in 2005.

iOS
A proprietary mobile operating system created by Apple exclusively for its hard‐
ware (e.g., iPhone, iPad, or Watch).

A common way to classify mobile apps is as follows:

Native apps
Mobile apps developed for a particular mobile operating system (e.g., Android or
iOS).

325

https://www.android.com
https://www.apple.com/ios

Web-based apps
Web applications rendered into a mobile browser (e.g., Chrome, Safari, or Firefox
Mobile). These apps are typically designed to be responsive (i.e., adaptable to dif‐
ferent screen sizes and viewports).

Hybrid apps
Mobile applications developed using client-side web standards (i.e., HTML, CSS,
and JavaScript) and deployed to mobile devices using a native container called
webview. Examples of frameworks that enable the development of hybrid apps
are Ionic, React Native, or Flutter.

Progressive web apps (PWAs)
Web applications built with modern web standard APIs (for installability, respon‐
siveness, etc.) intended to work on multiple platforms, including desktop and
mobile devices.

Mobile Testing
Testing is an essential process in the development of mobile apps. Mobile testing
involves different challenges such as hardware compatibility, network connectivity, or
operating system specifics. Different approaches to carry out mobile testing include:

Using desktop browsers with mobile emulation
We can use Selenium WebDriver for this type of mobile testing. To that aim, you
can use browser-specific features (as explained in “Device Emulation” on page
153) or use the CDP with Chromium-based browsers (as explained in “Device
emulation” on page 187).

Using virtual devices
There are two types of virtual mobile devices:

Emulators
Desktop applications that virtualize all aspects of mobile devices, including
the hardware and the operating system.

Simulators
Desktop apps that mimic certain features of a mobile operating system. They
are primarily intended for iOS since Android devices are emulated easily.

Using real devices
Using actual devices and their native Android or iOS APIs in real conditions.

326 | Chapter 10: Beyond Selenium

https://ionicframework.com
https://reactnative.dev
https://flutter.dev

Appium
Appium is an open source test automation framework for mobile apps. Appium pro‐
vides a cross-platform API that allows testing native, hybrid, and mobile web apps for
iOS and Android on virtual or real devices. Furthermore, Appium enables automated
testing for desktop applications on Windows and macOS.

The story of Appium started in 2011 when Dan Cuellar created an automation tool
for iOS applications developed in C# called iOSAuto. He met Jason Huggins (the co-
creator of Selenium) during the SeleniumConf 2012 in London. Jason contributed to
the project by adding a web server and using the WebDriver wire protocol over
HTTP, making iOSAuto compatible with any Selenium WebDriver client. They
changed the project name to Appium (the Selenium for Apps). In January 2013, Sauce
Labs decided to support Appium and provide more developer power. The new team
rewrote Appium using Node.js since it is a well-known, efficient framework for the
server side.

As depicted in Figure 10-1, Appium follows a client-server architecture. Appium is a
web server that exposes a REST API that carries out an automated session on mobile
or desktop apps. To that aim, the Appium server receives incoming requests from cli‐
ents, executes those commands on target devices/apps, and responds with an HTTP
response representing the command execution result. Appium client libraries com‐
municate with the Appium server using the Mobile JSON Wire Protocol (an official
draft extension to the original WebDriver protocol). The Appium server and its client
also use the W3C Webdriver specification. There are different Appium client libra‐
ries. Table 10-1 summarizes these libraries, both officially maintained by the Appium
project and community.

Figure 10-1. Appium architecture

Mobile Apps | 327

https://appium.io

Table 10-1. Appium client libraries

Name Language License Maintainer Website
Appium java-client Java Apache 2.0 Appium team https://github.com/appium/java-client

Appium ruby_lib Ruby Apache 2.0 Appium team https://github.com/appium/ruby_lib

Appium Python
Client

Python Apache 2.0 Appium team https://github.com/appium/python-client

appium-dotnet-
driver

C# Apache 2.0 Appium team https://github.com/appium/appium-dotnet-driver

WebdriverIO JavaScript
(Node.js)

MIT WebdriverIO
team

https://webdriver.io

web2driver JavaScript
(browser)

Apache 2.0 HeadSpin https://github.com/projectxyzio/web2driver

Appium library for
RobotFramework

Python Apache 2.0 Serhat Bolsu https://github.com/serhatbolsu/robotframework-appiu
mlibrary

In Appium, the support for the automation of a particular platform is provided by a
component called driver in Appium jargon. These drivers were tightly coupled with
the Appium Server in version 1. Nevertheless, in Appium 2 (the latest version of
Appium at the time of this writing), these drivers are segregated from the Appium
Server (see Figure 10-1) and are installed separately.

Table 10-2. Appium drivers

Name Target Description Repository
XCUITest Driver iOS and tvOS

apps
Leverages Apple’s XCUITest
libraries to enable automation

https://github.com/appium/appium-xcuitest-driver

Espresso Driver Android apps Enables automation through
Espresso (a testing framework
for Android)

https://github.com/appium/appium-espresso-driver

UiAutomator2
Driver

Android apps Leverages Google
UiAutomator2 technology to
enable automation on an
Android device or emulator

https://github.com/appium/appium-uiautomator2-driver

Windows Driver Windows
desktop apps

Uses WinAppDriver, a
WebDriver server for Windows
desktop apps

https://github.com/appium/appium-windows-driver

Mac Driver macOS
desktop apps

Uses Apple’s XCTest framework
for automating macOS
applications

https://github.com/appium/appium-mac2-driver

328 | Chapter 10: Beyond Selenium

https://github.com/appium/java-client
https://github.com/appium/ruby_lib
https://github.com/appium/python-client
https://github.com/appium/appium-dotnet-driver
https://webdriver.io
https://github.com/projectxyzio/web2driver
https://github.com/serhatbolsu/robotframework-appiumlibrary
https://github.com/serhatbolsu/robotframework-appiumlibrary
https://github.com/appium/appium-xcuitest-driver
https://github.com/appium/appium-espresso-driver
https://github.com/appium/appium-uiautomator2-driver
https://github.com/appium/appium-windows-driver
https://github.com/appium/appium-mac2-driver

A basic Appium test
This section presents a basic test case using Appium server 2 and the Appium Java
client. For simplicity, I use the UiAutomator2 Driver and an emulated Android
device. The SUT will be a web application, concretely, the practice site used through‐
out this book. The calls to the Appium Java clients are embedded in the different unit
testing frameworks used in the rest of the examples (i.e., JUnit 4 and 5, TestNG, and
Selenium-Jupiter). As usual, you can find the complete source code in the examples
repository. The requisites for running this test are:

1. Install Appium server 2.
2. Install UiAutomator2 Driver.
3. Install Android SDK (i.e., the official software development kit for Android). You

can easily install this SDK by installing Android Studio on your computer.
4. Create an Android Virtual Device (AVD) using the AVD Manager in Android

Studio. Figure 10-2 shows the menu option to open this tool, and Figure 10-3
shows the virtual device used in the test (a Nexus 5 mobile phone using the
Android API level 30).

5. Start the virtual device and Appium server.

Figure 10-2. Android Studio

Mobile Apps | 329

https://developer.android.com/studio

Figure 10-3. AVD Manager

As explained previously, the Appium server is a Node.js application. Therefore, you
need Node.js installed in your system to run Appium. The following commands sum‐
marize how to install the Appium server 2 and the UiAutomator2 Driver, and how to
start the Appium server:

npm install -g appium@next
appium driver install uiautomator2
appium --allow-insecure chromedriver_autodownload

We use npm (the default package manager for Node.js) to install Appium 2.

We use Appium to install the UiAutomator2 Driver.

We start the Appium server (by default, it listens to port 4723). We include a flag
to let Appium manage the required browser drivers (e.g., chromedriver) for auto‐
mating web applications (just like in Selenium WebDriver).

Example 10-1 shows a complete test using the Appium Java client. As you can see,
this test is quite similar to the regular Selenium WebDriver tests explained in this
book. The main difference, in this case, is that we use an instance of AppiumDriver, a
class provided by the Appium Java client. This class extends to the RemoteWebDriver
class of the Selenium WebDriver API. Therefore, we can leverage the Selenium Web‐
Driver API to test web applications on mobile devices. Figure 10-4 shows the emula‐
ted mobile device (a Nexus 5) during this test.

330 | Chapter 10: Beyond Selenium

Figure 10-4. Android device

Example 10-1. Test using Appium Java client

class AppiumJupiterTest {

 WebDriver driver;

 @BeforeEach
 void setup() throws MalformedURLException {
 URL appiumServerUrl = new URL("http://localhost:4723");
 assumeThat(isOnline(new URL(appiumServerUrl, "/status"))).isTrue();

 ChromeOptions options = new ChromeOptions();
 options.setCapability(MobileCapabilityType.PLATFORM_NAME, "Android");
 options.setCapability(MobileCapabilityType.DEVICE_NAME,
 "Nexus 5 API 30");
 options.setCapability(MobileCapabilityType.AUTOMATION_NAME,

Mobile Apps | 331

 "UiAutomator2");

 driver = new AppiumDriver(appiumServerUrl, options);
 }

 @AfterEach
 void teardown() {
 if (driver != null) {
 driver.quit();
 }
 }

 @Test
 void testAppium() {
 driver.get("https://bonigarcia.dev/selenium-webdriver-java/");
 assertThat(driver.getTitle()).contains("Selenium WebDriver");
 }

}

We specify the Appium server URL.

We make an assumption using the endpoint /status of the Appium server URL.
If this URL is not online, the test is skipped.

We use Chrome options to specify capabilities.

The first mandatory capability when using Appium is the platform name
(Android in this case).

The following required capability is the device name. This name must match the
name defined in the AVD manager (see Figure 10-3).

The last mandatory capability is the driver name (UiAutomator2 in this case).

We create an instance of AppiumDriver using the Appium server URL and the
browser options.

We use the driver object to exercise the SUT as usual.

REST Services
REST (REpresentational State Transfer) is an architectural style for designing dis‐
tributed services. Roy Fielding coined this term in his 2000 doctoral dissertation.
REST is a popular way of creating web services on top of the HTTP protocol.

332 | Chapter 10: Beyond Selenium

REST follows a client-server architecture. The server handles a set of resources, listen‐
ing for incoming requests made by clients. These resources are the building blocks of
REST services and define the type of information transferred. Each resource is identi‐
fied uniquely. In HTTP, we use URLs (also known as endpoints) for accessing individ‐
ual resources. Each resource has a representation, a machine-readable explanation of
the current state of a resource. We use a data-interchange format for defining repre‐
sentations, such as JSON, YAML, or XML. REST services expose a set of actions on
the resources, such as CRUD (create, retrieve, update, and delete). We can use the
HTTP methods (the so-called verbs) to map REST actions. Table 10-3 summarizes
the HTTP methods used to create REST services. Finally, we can use the HTTP status
codes to identify the response associated with REST actions. Table 10-4 summarizes
the typical HTTP status codes used in REST. Figure 10-5 shows a sequence of
requests and responses of an example REST service that uses different HTTP meth‐
ods and response codes.

Table 10-3. HTTP methods for creating REST services

HTTP Method Description

GET Read a resource

POST Send a new resource to the server

PUT Update a resource

DELETE Eliminate a resource

PATCH Partially update a resource

HEAD Ask if a given resource exists without returning any of its representations

OPTIONS Retrieve the available verbs for a given resource

Table 10-4. HTTP status codes for creating REST services

Status Code Description

200 OK The request was successful, and the content requested was returned (e.g., in a GET
request).

201 Created The resource was created (e.g., in a POST or PUT request).

204 No content The action was successful, but no content was returned. This status code is useful in
actions that do not require a response body (e.g., in a DELETE request).

301 Moved permanently The resource was moved to another location.

400 Bad request The request has some problems (e.g., missing parameters).

401 Unauthorized The requested resource is not accessible for the user that made the request.

403 Forbidden The resource is not accessible, but unlike 401, authentication will not affect the
response.

404 Not found The provided endpoint does not identify any resource.

405 Method not allowed The used verb is not allowed (e.g., when using PUT in a read-only resource).

500 Internal server error Generic unexpected condition in the server side.

REST Services | 333

Figure 10-5. Example of a REST service

REST Assured
REST APIs are ubiquitous. As usual, it is highly recommended to implement automa‐
ted tests for verifying these services, for instance, by using REST Assured. REST
Assured is a popular open source (Apache 2.0 license) Java library for testing REST
services. It provides a fluent API for testing and validating REST services. A conve‐
nient way to create readable assertions with REST Assured is to generate POJOs
(Plain Old Java Objects) to map the REST responses (e.g., in JSON format) as Java
classes. Then, we can use a library like AssertJ to verify the expected conditions using
the accessors (i.e., the getter methods) of these POJOs. Example 10-2 shows a test
case using this approach. Example 10-3 contains the POJO used in this test.

334 | Chapter 10: Beyond Selenium

https://rest-assured.io

Example 10-2. Test using REST Assured

class RestJupiterTest {

 @Test
 void testRest() {
 HttpBinGet get = RestAssured.get("https://httpbin.org/get").then()
 .assertThat().statusCode(200).extract().as(HttpBinGet.class);

 assertThat(get.getHeaders()).containsKey("Accept-Encoding");
 assertThat(get.getOrigin()).isNotBlank();
 }

}

We use REST Assured to request an online public REST service using the GET
HTTP method. This line also verifies the expected status code (200) and converts
the response payload (in JSON) to a Java class (shown in Example 10-3).

We assert the header list (using the corresponding accessor method) contains a
given key value.

We assert that the origin is not blank.

Example 10-3. POJO class for testing a REST service

public class HttpBinGet {

 public Map<String, String> args;
 public Map<String, String> headers;
 public String origin;
 public String url;

 // Getters and setters

}

This POJO defines a set of attributes to map the JSON response payload using
Java.

We define accessors (getters) and mutators (setters) for each class attribute.
Modern IDEs allow generating these methods automatically from the class
attributes.

REST Services | 335

Alternatives to Selenium
Selenium is currently the leading technology for implementing end-to-end tests. Nev‐
ertheless, it is not the only alternative available. This section provides an overview of
other frameworks and libraries that also allow implementing end-to-end tests for web
applications. In addition, the following subsections also review the main pros and
cons of each of these alternatives. In my opinion, Selenium is still the reference solu‐
tion for end-to-end testing since it is built to promote web standards (i.e., the W3C
WebDriver and WebDriver BiDi) to support the automation process and, therefore, it
guarantees cross-browser compatibility.

Cypress
Cypress is a JavaScript end-to-end automated testing framework. As illustrated in
Figure 10-6, the Cypress architecture consists of a Node.js process plus a tool called
Test Runner executed in a browser.

Figure 10-6. Cypress architecture

The Test Runner is an interactive web application that embeds a test based on Mocha
(a JavaScript unit testing framework) plus the web application under test as two
iframes. Test code and the application code run in the same browser tab (i.e., in the
same JavaScript loop). The Node.js process communicates with the Test Runner using
a WebSocket. Finally, the Node.js process is a proxy for the HTTP traffic between the
Test Runner and the web application under test.

The Cypress Test Runner is open source, licensed under the terms of the MIT license.
The Cypress team also provides commercial support for advanced features. One of
them is the Cypress Dashboard, a cloud-managed web application that allows track‐
ing the tests executed in Test Runner. Table 10-5 summarizes some of the most rele‐
vant pros and cons of Cypress.

336 | Chapter 10: Beyond Selenium

https://www.cypress.io
https://mochajs.org

Table 10-5. Cypress pros and cons

Pros Cons

• Automatic waiting and fast execution, since the test
and the application run in the same browser

• Live reload (the Test Runner automatically keeps
track of changes in the tests)

• Only some browsers supported: Firefox and Chromium-based
(including Chrome, Edge, and Electron), but not other browsers
like Safari or Opera

• Since the application is executed in a browser iframe, certain
operations are not allowed (e.g., drive different browsers or
multiple tabs)

The following commands show how to install Cypress locally and execute it. After
executing these commands, you will see the Cypress GUI (like in Figure 10-7). You
can use this GUI to execute tests with Cypress.

npm install cypress
npx cypress open

We can use npm (the default package manager in Node.js) for installing Cypress.

We can use npx (an npm package runner) for running the Cypress process.

Figure 10-7. Cypress GUI

By default, in the Cypress GUI, you can find introductory test examples in the folders
1-getting-started and 2-advanced-examples. In addition, we can create new tests
using the button New Spec File. For instance, Example 10-4 shows a brand-new basic
test using Cypress (i.e., a hello world in Cypress). This test is called hello-world-
cypress.spec.js (the extension spec.js is used by default in Mocha tests), and it is
stored in the path cypress/integration of the Cypress installation. Figure 10-8
shows a screenshot of the Cypress Test Runner during the execution of this test.

Alternatives to Selenium | 337

Example 10-4. Hello world test using Cypress

describe('Hello World with Cypress', () => {
 it('Login in the practice site', () => {
 cy.visit('https://bonigarcia.dev/selenium-webdriver-java/login-form.html')

 cy.get('#username').type('user')
 cy.get('#password').type('user')
 cy.contains('Submit').click()
 cy.contains('Login successful')

 cy.screenshot("hello-world-cypress")
 })
})

We open the login page in the practice site.

We type the correct credentials (username and password).

We click on the Submit button.

We verify the resulting page contains the message for successful login.

We make a browser screenshot.

Figure 10-8. Cypress Test Runner

338 | Chapter 10: Beyond Selenium

WebDriverIO
WebDriverIO is an automated testing framework for web and mobile applications. It
is entirely open source (MIT license) and based on web standards such as the W3C
WebDriver protocol. Figure 10-9 illustrates its architecture. WebDriverIO is written
in JavaScript and runs on Node.js. It uses several services to support automation:
chromedriver (for local Chrome browsers), Selenium Server (for other browsers),
Appium Server (for mobile devices), Chrome DevTools (for Chromium-based local
browsers using the CDP), and cloud providers (such as Sauce Labs, BrowserStack, or
TestingBot). These services manipulate the corresponding browsers and mobile devi‐
ces. Table 10-6 summarizes some of the pros and cons of WebDriverIO.

Figure 10-9. WebDriverIO architecture

Table 10-6. WebDriverIO pros and cons

Pros Cons

• Support for multiple browsers and mobile devices
• Works with different testing and reporting frameworks
• Based on web standards

• Only available using JavaScript

The following npm command installs WebDriverIO locally. This installer displays a
command-line wizard that asks for several options, such as the services (chomedriver,
Selenium Server, Appium Server, CDP, or cloud providers), testing framework
(Mocha, Jasmine, or Cucumber), or reporter tool (JUnit or Allure, among others):

npm init wdio .

When the previous command finishes, we can create our custom tests. For instance,
Example 10-5 shows a basic WebDriverIO using Mocha. We locate this test under the
folder test of the project scaffolding and run it through the following command:

npx wdio run ./wdio.conf.js

Alternatives to Selenium | 339

https://webdriver.io

Example 10-5. Hello world test using WebDriverIO

describe('Hello World with WebDriverIO', () => {
 it('Login in the practice site', async () => {
 await browser.url(
 `https://bonigarcia.dev/selenium-webdriver-java/login-form.html`);

 await $('#username').setValue('user');
 await $('#password').setValue('user');
 await $('button[type="submit"]').click();
 await expect($('#success')).toHaveTextContaining('Login successful');
 await browser.saveScreenshot('hello-world-webdriverio.png');
 });
});

TestCafe
TestCafe is an open source (MIT license) cross-browser automation testing tool. The
core idea of TestCafe is to avoid external drivers to support the automation process
and emulate the user actions using a hybrid client-server architecture (see
Figure 10-10). The server side is implemented in Node.js and contains a proxy that
intercepts the HTTP traffic with the web application under test. TestCafe tests are
also written as Node.js scripts and are executed on the server side. The automation
scripts that emulate the user activity run on the client side on the tested page in the
browser. Table 10-7 summarizes some advantages and limitations of TestCafe.

Figure 10-10. TestCafe architecture

Table 10-7. TestCafe pros and cons

Pros Cons

• Full cross-browser support (since TestCafe only
launches browsers, it can automate any browser)

• It supports only JavaScript and TypeScript
• Some actions cannot be automated since it is not possible with

JavaScript

340 | Chapter 10: Beyond Selenium

https://testcafe.io

We can install TestCafe easily using npm. Then, we can use the TestCafe CLI tool to
run TestCafe scripts from the command line. The following snippet illustrates how:

npm install -g testcafe
testcafe chrome helloworld-testcafe.js

We install TestCafe globally.

We start a TestCafe basic script (Example 10-6) using Chrome as a browser.

Example 10-6. Hello world test using TestCafe

import { Selector } from 'testcafe';

fixture`Hello World with TestCafe`
 .page`https://bonigarcia.dev/selenium-webdriver-java/login-form.html`;
test('Login in the practice site', async t => {
 await t
 .typeText('#username', 'user')
 .typeText('#password', 'user')
 .click('button[type="submit"]')
 .expect(Selector('#success').innerText).eql('Login successful')
 .takeScreenshot();
});

Puppeteer
Puppeteer is an open source (MIT license) Node.js library that provides a high-level
API to control Chromium-based browsers over the DevTools Protocol. Puppeteer is
maintained by the Chrome DevTools team at Google. Figure 10-11 illustrates the
architecture of Puppeteer. Table 10-8 presents the main advantages and drawbacks of
Puppeteer.

Figure 10-11. Puppeteer architecture

Alternatives to Selenium | 341

https://pptr.dev

Table 10-8. Puppeteer pros and cons

Pros Cons

• Fast execution and comprehensive automation
capabilities (due to direct communication with the
browser using CDP)

• Limited cross-browser support (only Chromium-based browsers,
although there is experimental Firefox support at the time of
writing)

• Supports only JavaScript and TypeScript

We can install Puppeteer using npm. Then, we need to use Node.js to run Puppeteer
tests (for instance, Example 10-7). The following snippet shows these commands:

npm install puppeteer
node helloword-puppeteer.js

Example 10-7. Hello world test using Puppeteer

const puppeteer = require('puppeteer');

(async () => {
 const browser = await puppeteer.launch();
 const page = await browser.newPage();

 await page.goto('https://bonigarcia.dev/selenium-webdriver-java/login-form.html');
 await page.type('#username', 'user');
 await page.type('#password', 'user');
 await page.click('button[type="submit"]');
 await page.waitForXPath('//*[contains(text(), "Login successful")]');
 await page.screenshot({ path: 'helloword-puppeteer.png' });

 await browser.close();
})();

Puppeteer runs browsers in headless mode by default. It can be configured to use
nonheadless browsers simply by changing this statement to:

const browser = await puppeteer.launch({ headless: false });

Playwright
Playwright is an open source (Apache 2.0 license) library for browser automation
supported by Microsoft. Playwright originally started as a Node.js library. In addition
to JavaScript, it now supports other programming languages, namely Python, Java,
and .NET C#.

Playwright supports three types of web engines: Chromium, Firefox, and WebKit (i.e.,
the web browser engine used by Safari). The idea of supporting these engines is that
they cover most of the browser market. Thus, the Playwright team maintains a
patched version of these browsers that expose the necessary capabilities to enable the

342 | Chapter 10: Beyond Selenium

https://playwright.dev

automation. These patched versions provide an event-driven architecture to access
different internal browser processes (e.g., the render, network, browser, or service
worker processes). Figure 10-12 illustrates this architecture. Table 10-9 contains some
of the most relevant pros and cons for Playwright.

Figure 10-12. Playwright architecture

Table 10-9. Playwright pros and cons

Pros Cons

• Autowaiting for elements to be ready
• Multilanguage API
• Provides a test generator by recording user actions in the browser
• Allows browser session recording
• Intercepts network traffic for stubbing and mocking

• Uses patched browser versions instead of actual
releases

To use Playwright, we need first to install the patched browser binaries. We can use
npm to that aim. The following command downloads the proper browser binaries for
Chromium, Firefox, and WebKit for the operating system running this command
(Windows, Linux, and macOS are supported):

npm install -D playwright

Then we can implement Playwright scripts using one supported API. For instance,
when using the JavaScript API, we can use a third-party test runner (e.g., Jest, Jas‐
mine, Mocha, etc.) or use the Playwright Test (i.e., the test runner provided by the
Playwright team). To use the latter, we need to install it as follows:

npm install -D @playwright/test

Example 10-8 contains a basic Playwright JavaScript test to be executed with the Play‐
wright runner. This command supposes that this test (called helloworld-

playwright.spec.mjs) is located under the tests directory. We can invoke the
Playwright runner as shown in the following snippet to run this test. This command
runs Playwright tests in headless mode by default. To run browsers in nonheadless
mode, you need to include the flag --headed at the of the command:

Alternatives to Selenium | 343

npx playwright test

Example 10-8. Hello world test using Playwright

const { test, expect } = require('@playwright/test');

test('Hello World with Playwright', async ({ page }) => {
 await page.goto('https://bonigarcia.dev/selenium-webdriver-java/login-form.html');

 await page.type('#username', 'user');
 await page.type('#password', 'user');
 await page.click('button[type="submit"]');
 await expect(page.locator('#success')).toHaveText('Login successful');

 await page.screenshot({ path: 'helloworld-playwright.png' });
});

Summary and Final Remarks
Web development is a heterogeneous discipline that involves many different technol‐
ogies, such as client side, server side, or integration with external services, to name a
few. For this reason, this chapter introduced two complementary technologies for
Selenium that can be helpful in testing web applications: Appium (an open source test
automation framework for mobile apps) and REST Assured (an open source Java
library for testing REST services). You also learned the basics of alternative tools for
implementing end-to-end tests for web applications, namely Cypress, WebDriverIO,
TestCafe, Puppeteer, and Playwright. Although these alternatives deliver remarkable
advantages compared to Selenium (e.g., automated waiting), in my opinion, Selenium
provides a more comprehensive automation model since it is built on top of web
standards, such as the W3C WebDriver and WebDriver BiDi. In addition, the Sele‐
nium project actively participates in the deelopment of these specifications.

This chapter concludes your journey through the development of end-to-end tests
with Selenium. The next step is to put all the knowledge presented in this book into
practice in your projects. This way, you can build your custom automation frame‐
work for your team, project, company, etc. There are many decisions you need to
make, such as the project setup (e.g., Maven, Gradle), unit testing framework (e.g.,
JUnit, TestNG), browser infrastructure (e.g., Docker, cloud providers), and integra‐
tion with third-party utilities. To deal with all of this complexity, as a final word, I
recommend you play with the provided examples in this book. In other words: clone
the repository, run the tests, and edit the code to fulfill your needs. I will maintain the
GitHub repo after the book is published. And remember: it is an open source
software project, so feel free to create a pull request to improve it if you want to
contribute.

344 | Chapter 10: Beyond Selenium

APPENDIX A

What’s New in Selenium 4

This appendix provides a summary of the novelties available in Selenium 4. The aim
of this content is twofold. First, it enumerates the new features in the core compo‐
nents of the Selenium suite (i.e., WebDriver, Driver, and IDE), providing a link to the
book chapter that explains each aspect. In addition, this appendix describes other
aspects of the Selenium project that changed with Selenium 4, such as documentation
and governance. The second objective is to identify the deprecated parts and the cor‐
responding new features when migrating from Selenium 3 to 4.

Selenium WebDriver
The first stable version of Selenium WebDriver 4.0.0 was released on October 13,
2021. Table A-1 summarizes the most relevant new features in this version compared
with the former stable version (i.e., Selenium WebDriver 3.141.59).

Table A-1. Novelties in Selenium WebDriver 4

Feature Description Chapter Section
Full adoption of W3C
WebDriver

Standard communication protocol between the
Selenium WebDriver API and the drivers

Chapter 1 “Selenium WebDriver” on page 5

Relative locators Location strategy based on the proximity of
other web elements

Chapter 3 “Relative Locators” on page 76

Pinned scripts Attach a piece of JavaScript to a WebDriver
session

Chapter 4 “Pinned Scripts” on page 108

Element screenshots Capture screenshots of web elements (instead of
the entire page)

Chapter 4 “WebElement Screenshots” on page
115

Shadow DOM Seamless access to a shadow tree Chapter 4 “The Shadow DOM” on page 118

Open new windows
and tabs

Improved way to navigate to different windows
and tabs

Chapter 4 “Tabs and Windows” on page 129

345

Feature Description Chapter Section
Decorators Wrappers for WebDriver objects for

implementing event listeners
Chapter 4 “Event Listeners” on page 138

Chrome DevTools
Protocol

Native access to the DevTools in Chromium-
based browsers (e.g., Chrome and Edge)

Chapter 5 “The Chrome DevTools Protocol” on
page 177

Network interception Stubbing out the backend requests and
intercepting network traffic

Chapter 5 “Network interceptor” on page 178

Basic authentication Simplified API for basic and digest
authentication

Chapter 5 “Basic and digest authentication” on
page 179

Full-page screenshots Capture the full content of a web page Chapter 5 “Full-page screenshot” on page 183

Location context Mock geolocation coordinates Chapter 5 “Location Context” on page 191

Print to PDF Save web pages as PDF documents Chapter 5 “Print Page” on page 193

WebDriver BiDi Bidirectional communication between driver and
browser

Chapter 5 “WebDriver BiDi” on page 194

Migration Guide
This section summarizes the changes you need to make to migrate an existing code‐
base that uses Selenium WebDriver 3 to version 4.

Locators

The utility methods to find elements (FindsBy interfaces) have been removed in Sele‐
nium WebDriver 4. Table A-2 compares the old and new API for finding Web Ele‐
ments in Selenium WebDriver. You can find more details about this feature in
“Locating WebElements” on page 59.

Table A-2. Migration of web element location in Selenium WebDriver 4

Selenium WebDriver 3 Selenium WebDriver 4
driver.findElementByTagName("tagName");
driver.findElementByLinkText("link");
driver
 .findElementByPartialLinkText("partLink");
driver.findElementByName("name");
driver.findElementById("id");
driver.findElementByClassName("class");
driver.findElementByCssSelector("css");
driver.findElementByXPath("xPath");

driver.findElement(By.tagName("tagName"));
driver.findElement(By.linkText("link"));
driver.findElement(By
 .partialLinkText("partLink"));
driver.findElement(By.name("name"));
driver.findElement(By.id("id"));
driver.findElement(By.className("class"));
driver.findElement(By.cssSelector("css"));
driver.findElement(By.xpath("xPath"));

User gestures

The class Actions allows emulating complex user gestures (such as drag and drop,
hovering, mouse movements, etc.). As illustrated in Table A-3, the API exposed by
this class has been simplified in Selenium WebDriver 4. “User Gestures” on page 86
contains further information and examples about this class.

346 | Appendix A: What’s New in Selenium 4

Table A-3. Migration of the Actions class in Selenium WebDriver 4

Selenium WebDriver 3 Selenium WebDriver 4
actions.moveToElement(webElement).click();
actions.moveToElement(webElement).doubleClick();
actions.moveToElement(webElement).contextClick();
actions.moveToElement(webElement).clickAndHold();
actions.moveToElement(webElement).release();

actions.click(webElement);
actions.clickAndHold(webElement);
actions.contextClick(webElement);
actions.doubleClick(webElement);
actions.release(webElement);

Waits and timeouts

The parameters to specify timeouts have switched from TimeUnit to Duration.
Table A-4 describes this change. You can see more detail in “Waiting Strategies” on
page 94 and “Timeouts” on page 110.

Table A-4. Migration of waits and timeouts in Selenium WebDriver 4

Selenium WebDriver 3 Selenium WebDriver 4
new WebDriverWait(driver, 3).
 until(ExpectedConditions.
 elementToBeClickable(By.id("id")));

Wait<WebDriver> wait =
 new FluentWait<WebDriver>(driver)
 .withTimeout(30, TimeUnit.SECONDS)
 .pollingEvery(5, TimeUnit.SECONDS)
 .ignoring(NoSuchElementException.class);

driver.manage().timeouts()
 .implicitlyWait(10, TimeUnit.SECONDS);
driver.manage().timeouts()
 .setScriptTimeout(3, TimeUnit.MINUTES);
driver.manage().timeouts()
 .pageLoadTimeout(30, TimeUnit.SECONDS);

new WebDriverWait(driver,
 Duration.ofSeconds(3)).until(
 ExpectedConditions.
 elementToBeClickable(By.id("id")));

Wait<WebDriver> wait =
 new FluentWait<WebDriver>(driver)
 .withTimeout(Duration.ofSeconds(30))
 .pollingEvery(Duration.ofSeconds(5))
 .ignoring(NoSuchElementException.class);

driver.manage().timeouts()
 .implicitlyWait(Duration.ofSeconds(10));
driver.manage().timeouts()
 .scriptTimeout(Duration.ofMinutes(3));
driver.manage().timeouts()
 .pageLoadTimeout(Duration.ofSeconds(30));

Event listeners

In Selenium WebDriver 3, we used the class EventFiringWebDriver to create event
listeners. This class is deprecated in Selenium WebDriver 4, and instead, the class
EventFiringDecorator is recommended. Table A-5 summarizes this change. “Event
Listeners” on page 138 contains a complete example of this feature.

Table A-5. Migration of event listeners in Selenium WebDriver 4

Selenium WebDriver 3 Selenium WebDriver 4
EventFiringWebDriver newDriver =
 new EventFiringWebDriver(originalDriver);
wrapper.register(myListener);

WebDriver newDriver =
 new EventFiringDecorator(myListener)
 .decorate(originalDriver);

What’s New in Selenium 4 | 347

Capabilities
The static methods for selecting different browser types have been removed in Sele‐
nium WebDriver 4. Instead, we should use browser-specific options. Table A-6 sum‐
marizes this change. “Browser Capabilities” on page 145 contains more details and
examples.

Table A-6. Migration of desired capabilities in Selenium WebDriver 4

Selenium WebDriver 3 Selenium WebDriver 4
DesiredCapabilities caps =
 DesiredCapabilities.chrome();
DesiredCapabilities caps =
 DesiredCapabilities.edge();
DesiredCapabilities caps =
 DesiredCapabilities.firefox();
DesiredCapabilities caps =
 DesiredCapabilities.internetExplorer();
DesiredCapabilities caps =
 DesiredCapabilities.safari();
DesiredCapabilities caps =
 DesiredCapabilities.chrome();

ChromeOptions options =
 new ChromeOptions();
EdgeOptions options =
 new EdgeOptions();
FirefoxOptions options =
 new FirefoxOptions();
InternetExplorerOptions options =
 new InternetExplorerOptions();
SafariOptions options =
 new SafariOptions();
ChromeOptions options =
 new ChromeOptions();

Then, the WebDriver constructors based on capabilities are deprecated instead of
browser-specific options. Table A-7 shows an example of this process. You can find
examples using this constructor “Browser Capabilities” on page 145.

Table A-7. Migration of WebDriver instantiation using capabilities in Selenium WebDriver 4

Selenium WebDriver 3 Selenium WebDriver 4
WebDriver driver = new ChromeDriver(caps); WebDriver driver = new ChromeDriver(options);

Moreover, how capabilities are merged has changed in Selenium WebDriver 4. In
Selenium WebDriver 3, it was possible to combine capabilities by mutating the calling
object. This process is different in Selenium WebDriver 4, in which the merge opera‐
tion needs to be assigned. Table A-8 provides an example of this change.

Table A-8. Migration of merging capabilities in Selenium WebDriver 4

Selenium WebDriver 3 Selenium WebDriver 4
MutableCapabilities caps =
 new MutableCapabilities();
caps.setCapability("platformName",
 "Linux");
ChromeOptions options =
 new ChromeOptions();
options.setHeadless(true);
options.merge(caps);

MutableCapabilities caps =
 new MutableCapabilities();
caps.setCapability("platformName",
 "Linux");
ChromeOptions options =
 new ChromeOptions();
options.setHeadless(true);
options = options.merge(caps);

348 | Appendix A: What’s New in Selenium 4

Finally, the BrowserType interface has been deprecated in favor of the new Browser
interface. Table A-9 illustrates the difference between these interfaces when specifying
capabilities. You can find more details about this aspect in “Creation of RemoteWeb‐
Driver Objects” on page 199.

Table A-9. Migration of capabilities in Selenium WebDriver 4

Selenium WebDriver 3 Selenium WebDriver 4
caps.setCapability("browserName",
 BrowserType.CHROME);

caps.setCapability("browserName",
 Browser.CHROME);

Selenium Grid
Selenium Grid 4 has been completely rewritten from scratch. The new codebase has
been created with all the learning from Selenium Grid 3, improving its source code
maintainability. Selenium Grid 4 supports the classical mode implemented in version
3, i.e., the standalone and the hub-nodes architecture. In addition, Selenium Grid
provides a fully distributed architecture to improve its overall performance and scala‐
bility. Finally, Selenium Grid 4 uses modern infrastructure technologies such as
Docker, Kubernetes, or distributed tracing using OpenTelemetry.

“Selenium Grid” on page 6 provides an introduction to Selenium Grid. Then, “Sele‐
nium Grid” on page 203 explains the details of the different modes of Selenium Grid
(i.e., standalone, hub-nodes, and fully distributed), and how to use it from Selenium
WebDriver tests.

Migration guide
When using Selenium Grid as a Java dependency and bumping to version 4, in addi‐
tion to the version upgrade, you should know that the project coordinates changed in
Selenium Grid 4. Previously, the artifactId was selenium-server. This value has
changed to selenium-grid in Selenium Grid 4. Table A-10 contains the new coordi‐
nates of Selenium Grid 4 in Maven and Gradle.

Table A-10. Migration of Selenium Grid 4 as Maven and Gradle dependency

Selenium WebDriver 3 Selenium WebDriver 4
<dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-server</artifactId>
 <version>3.141.59</version>
</dependency>

<dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-grid</artifactId>
 <version>4.0.0</version>
</dependency>

testImplementation("org.seleniumhq.selenium:
 selenium-server:3.141.59")

testImplementation("org.seleniumhq.selenium:
 selenium-grid:4.0.0")

What’s New in Selenium 4 | 349

Selenium IDE
Selenium IDE is introduced in “Selenium IDE” on page 8. Some of the new features
available as of Selenium 4 are:

Backup element selectors
Selenium IDE records multiple locators (e.g., by id, XPath, or CSS selector) for
each element. This way, if the test execution does not locate an element using the
first locator, it will fall back to the following until it is found.

Control flows
Selenium IDE enhances script execution using conditionals (i.e., if, else, else
if, and end) and loops (i.e., do, while, times, and forEach) .

Code export
Selenium IDE allows exporting the recording to several Selenium WebDriver
binding languages (i.e., C#, Java, JavaScript, Python, and Ruby) and unit testing
frameworks (i.e., NUnit, xUnit, JUnit, Mocha, pytest, and RSpec).

Plug-ins
We can extend the Selenium IDE (e.g., introducing new commands or third-
party integration) using custom add-ons.

Other Novelties
The official Selenium documentation has been significantly improved with Selenium
4. The new site is available on https://www.selenium.dev, and it covers the Selenium
subprojects (WebDriver, IDE, and Grid), user guide, blog, support, and other project
information.

Last but not least, Simon Stewart, the cocreator of Selenium WebDriver and Selenium
project lead since 2009, stepped down as leader of the Selenium project on October
27, 2021. You can find the current project structure (composed of the project leader‐
ship committee, technical leadership committee, and Selenium committers and trig‐
gers) and governance (i.e., model, philosophy, project roles, decision-making process,
etc.) on the Selenium website.

350 | Appendix A: What’s New in Selenium 4

https://www.selenium.dev
https://www.selenium.dev/project

APPENDIX B

Driver Management

As discussed in Chapter 1, driver management involves three steps: download, setup,
and maintenance. Manual driver management is costly in terms of effort and poten‐
tially problematic regarding maintainability. For this reason, I use WebDriverMan‐
ager to carry out this process in an automated and automaintained manner in all the
examples of this book. For completeness, this appendix also describes the involved
steps (download, setup, and maintenance) in manual driver management.

WebDriverManager: Automated Driver Management
WebDriverManager is an open source Java library that manages the drivers required
by Selenium WebDriver (e.g., chromedriver, geckodriver, msedgedriver, etc.) in an
automated manner. WebDriverManager provides a set of managers for different
browsers, namely Chrome, Firefox, Edge, Opera, Chromium, and Internet Explorer.

WebDriverManager internally executes a resolution algorithm to manage the drivers
required by each browser. This algorithm aims to automatically discover, download,
set up, and maintain these drivers.

Figure B-1 represents this algorithm in the context of the methodology implemented
by WebDriverManager. For each manager (e.g., chromedriver(), firefoxdriver(),
etc.), the resolution algorithm works as follows:

1. WebDriverManager tries to find the browser version (e.g., Chrome) installed in
the local machine. For that, it uses an internal knowledge database called com‐
mands database. This database contains a list of shell commands (in different
operating systems) that allow discovering the browser versions (e.g., google-
chrome --version in Linux).

351

https://bonigarcia.dev/webdrivermanager

2. Using the found major browser version (e.g., Chrome 89), WebDriverManager
determines the correct driver version (e.g., chromedriver 89.0.4389.23). I call this
process version resolution. To ease this process, several driver maintainers (i.e.,
chromedriver and msedgedriver) publish the specific driver version in their
online repositories using simple text files (e.g., https://chromedriver.stor‐
age.googleapis.com/LATEST_RELEASE_89). Unfortunately, this information is
not available for other drivers, such as geckodriver or operadriver. For this rea‐
son, WebDriverManager uses another internal knowledge database (called ver‐
sions database) to keep the association between the versions of browsers and
drivers. Both versions and commands databases synchronize their values using
an online master reference stored on GitHub.

3. WebDriverManager downloads the specific driver for the local operating system
(Windows, Linux, or macOS) and stores it in the local file system in the driver
cache (by default, in the path ~/.cache/selenium).

4. Finally, WebDriverManager exports the downloaded driver path using the proper
Java system property (e.g., webdriver.chrome.driver).

For the sake of performance and maintainability, WebDriverManager internally uses
a resolution cache. This cache (by default stored in the driver cache as a properties
file) keeps the relationship between the resolved driver versions. This relationship is
valid following a time-to-live (TTL) approach. The default value of this TTL is one
day for drivers (e.g., chromedriver 89.0.4389.23) and one hour for browsers (e.g.,
Chrome 89). The resolution algorithm resolves drivers using the cached files in the
subsequent invocations (this usually happens in a Selenium WebDriver test suite).
Then, when a TTL expires, the resolution algorithm tries to resolve a new driver
release. Finally, when a different browser version is detected, WebDriverManager
downloads the new driver (if required). Thanks to this process, the version compli‐
ance of browser and driver is guaranteed even for evergreen browsers.

352 | Appendix B: Driver Management

Figure B-1. WebDriverManager methodology

Generic Manager
In addition to the browser-specific managers (e.g., chromedriver(), firefox
driver(), etc.), WebDriverManager provides a generic manager, i.e., a manager that
can be parameterized to act as a specific manager (for Chrome, Firefox, etc.). This
feature is available using the method getInstance() of the WebDriverManager API.
There are different options to invoke this method:

getInstance(Class<? extends WebDriver> webDriverClass)

Where webDriverClass is a class of the WebDriver hierarchy, such as Chrome
Driver.class, FirefoxDriver.class, etc.

Driver Management | 353

getInstance(DriverManagerType driverManagerType)

Where driverManagerType is an enumeration provided by WebDriverManager
to identify the available managers. The possible values of this enumeration are
CHROME, FIREFOX, EDGE, OPERA, CHROMIUM, IEXPLORER, and SAFARI.

getInstance(String browserName)

Where browserName is the browser name as case-insensitive string. The possible
values are Chrome, Firefox, Edge, Opera, Chromium, IExplorer, and Safari.

getInstance()

When no parameter is specified, the configuration key wdm.defaultBrowser is
used to select the manager (Chrome by default).

Advanced Configuration
WebDriverManager provides different ways of configuration. First, you can use its
Java API through each manager. This API allows concatenating several methods to
specify custom options or preferences. You can find the complete description of the
WebDriverManager API in its documentation. For example, the following command
shows how to set up a proxy for the network connection:

WebDriverManager.chromedriver().proxy("server:port").setup();

The second way to configure WebDriverManager is using Java system properties.
Each WebDriverManager API method has an equivalent configuration key. For
instance, the API method cachePath() (used to specify the driver cache folder)
works the same way as the configuration key wdm.cachePath. These types of configu‐
ration keys can be passed, for example, using the command line:

mvn test -Dwdm.cachePath=/custom/path/to/driver/cache

Finally, you can also use environment variables to configure WebDriverManager. The
variable names derive from each configuration key (e.g., wdm.cachePath), converting
them to uppercase and replacing the symbol . with _ (e.g., WDM_CACHEPATH). This
mechanism can be convenient for configuring global parameters at the operating sys‐
tem level.

354 | Appendix B: Driver Management

https://bonigarcia.dev/webdrivermanager

Other Uses
In addition to serving as a Java dependency, WebDriverManager can be used in other
ways, namely:

As a command-line interface (CLI) tool
This mode allows you to resolve drivers (e.g., chromedriver, geckodriver). In
addition, this mode allows you to execute browsers in Docker containers and
interact with them through a remote desktop session.

As a server
The WebDriverManager Server is based on HTTP and offers two types of serv‐
ices. First, it exposes a simple RESTlike API to resolve drivers. Second, it acts as a
regular Selenium Server, and therefore, you can use it with different language
bindings than Java.

As a Java agent
In this case, and using the JVM instrumentation API, WebDriverManager uses
the Java instrumentation API to check the objects being created in the JVM.
When WebDriver objects are instantiated (ChromeDriver, FirefoxDriver, etc.),
the required manager is used to resolve its driver (chromedriver, geckodriver,
etc.). Thanks to this approach, you can get rid of the WebDriverManager call
from your tests.

Manual Driver Management
This section describes how to manually implement the driver management process
(download, setup, and maintenance).

Download
The first step for driver management is to download the proper driver. Table B-1
shows the websites to obtain the drivers for the main browsers. You need to find the
correct driver version and platform (Windows, Linux, macOS) for the browser you
plan to use. Regarding the version, the Chrome and Edge (although not Firefox,
unfortunately) maintainers follow the same versioning schema for drivers and brows‐
ers to ease this process. So, for instance, if you use Chrome or Edge 91.x, you also
need to use chromedriver and msedgedriver 91.x. You will find the specific driver
version in the documentation provided on the websites. For instance, to use Chrome
91, you need to download ChromeDriver 91.0.4472.19.

Driver Management | 355

Table B-1. Java system properties to set up drivers

Browser Driver Download website
Chrome/Chromium chromedriver https://chromedriver.chromium.org/downloads

Edge msedgedriver https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver

Firefox geckodriver https://github.com/mozilla/geckodriver/releases

Setup
Once you have the required driver for your WebDriver script, you need to set it up
correctly. There are two ways to carry out this process. The first one is adding the
driver location (the full path or the parent folder that contains the driver) to your
PATH environmental variable (env). The PATH env is standard in Unix-like (e.g., Linux
and macOS) and Windows operating systems. This environmental variable allows
specifying a set of folders where the operating system locates executable programs.
The way we configure PATH (and other environmental variables) depends on the spe‐
cific operating system. For example, in Windows systems, we can do it using its GUI
(Control Panel → System → Advanced → Environment Variables). In a Unix-like sys‐
tem, we can use the command line to carry out this process, for instance, using the
following command (or equivalent):

export PATH=$PATH:/path/to/drivers >> ~/.profile

The second way to set up the driver is using Java system properties, which are configu‐
ration attributes (in the form of name/value) passed to the JVM. Table B-2 summari‐
zes the names for the main drivers in Selenium WebDriver. The value for these
properties is the full path of a given driver (e.g., /path/to/drivers/chromedriver).

Table B-2. Java system properties to set up drivers

Browser Driver Java system property name
Chrome/Chromium chromedriver webdriver.chrome.driver

Edge msedgedriver webdriver.edge.driver

Firefox geckodriver webdriver.gecko.driver

There are two ways to configure these properties: the command line (passing the sys‐
tem property using the -Dname=value syntax) or Java code. For example,
Example B-1 shows the Maven and Gradle commands to execute all the tests of a
given project while passing the properties to set up the drivers for Chrome, Edge, and
Firefox. Then, Example B-2 shows how to make the same configuration, but this time
using Java.

356 | Appendix B: Driver Management

https://chromedriver.chromium.org/downloads
https://developer.microsoft.com/en-us/microsoft-edge/tools/webdriver
https://github.com/mozilla/geckodriver/releases

Example B-1. Maven and Gradle commands to configure system properties in the
command line

mvn test -Dwebdriver.chrome.driver=/path/to/drivers/chromedriver
mvn test -Dwebdriver.edge.driver=/path/to/drivers/msedgedriver
mvn test -Dwebdriver.gecko.driver=/path/to/drivers/geckodriver

gradle test -Dwebdriver.chrome.driver=/path/to/drivers/chromedriver
gradle test -Dwebdriver.edge.driver=/path/to/drivers/msedgedriver
gradle test -Dwebdriver.gecko.driver=/path/to/drivers/geckodriver

Example B-2. Java commands to configure system properties

System.setProperty("webdriver.chrome.driver", "/path/to/drivers/chromedriver");
System.setProperty("webdriver.edge.driver", "/path/to/drivers/msedgedriver");
System.setProperty("webdriver.gecko.driver", "/path/to/drivers/geckodriver");

Maintenance
Last but not least, the final step of driver management is to maintain these drivers.
This maintenance is necessary because evergreen browsers (such as Chrome, Edge, or
Firefox) upgrade themselves automatically. Although appealing from a user perspec‐
tive, this automated upgrade is problematic for Selenium WebDriver scripts where
the driver management is manual. In this case, driver and browser compatibility is
not guaranteed in the long run.

A specific driver (e.g., chromedriver version 84.0.4147.30) is typically compatible
with a given browser version (e.g., Chrome 84). Eventually, this compatibility is not
guaranteed because of the automatic upgrade. As a result, a Selenium WebDriver
script based on this driver stops working (i.e., the test is said to be broken). In prac‐
tice, Selenium WebDriver developers experience this problem when tests fail because
of driver and browser incompatibility. For instance, when using Chrome as a browser,
a broken test due to driver incompatibility reports the following error message: “this
version of chromedriver only supports Chrome version N” (where N is the latest ver‐
sion of Chrome supported by a particular version of chromedriver). To illustrate this
problem, Figure B-2 shows the worldwide search interest of that error message on
Google during 2019 and 2020, together with the release date of the different Chrome
versions in this period. As you can see, the interest over time concerning this error
message is related to some Chrome releases.

Driver Management | 357

Figure B-2. Worldwide relative interest over time of the search term “this version of chro‐
medriver only supports chrome version” in Google Trends together with the release dates
of Chrome during 2019 and 2020

Summary
Selenium WebDriver is a library that allows you to control web browsers program‐
matically. The automation is based on the native capabilities of each browser. There‐
fore, we need to place a platform-dependent binary file called driver between the
script/test using the Selenium WebDriver API and the browser. Some examples of
drivers are chromedriver (for Chrome), geckodriver (for Firefox), and msedgedriver
(for Edge). This appendix presented the driver management process. This process has
three steps (download, setup, and maintenance), and it can be done either manually
or automatically. By default, I recommend you use an automated driver management
approach. To that aim, the reference tool in Java is WebDriverManager.

358 | Appendix B: Driver Management

APPENDIX C

Examples Repository Setup

The examples repository is a vital ingredient of this book as it contains all the covered
examples and the complete configuration of Maven and Gradle. In addition, this repo
uses several services provided by GitHub, such as:

GitHub Pages
A service that allows hosting public websites configured straight from a GitHub
repository. I use a simple website linked to the examples repository to showcase
web pages used as SUT in the Selenium WebDriver test examples: https://bonigar
cia.dev/selenium-webdriver-java. As you can see, it contains different HTML
pages using Bootstrap as a CSS framework.

GitHub Actions
A CI/CD build server for GitHub repositories. I use this service to build and test
the whole repo with each new commit. You can see the details about the work‐
flow configuration at the end of this section.

Dependabot
A bot that automatically updates the project dependencies. When this bot detects
a new version for any Maven and Gradle dependencies (see the following subsec‐
tion for more details), it creates a pull request with the corresponding update.

In the rest of this appendix, you will find the configuration details for the examples
repository. This configuration includes the Maven and Gradle dependencies declara‐
tion and other aspects, and it should be sufficient for standard projects using Sele‐
nium WebDriver. In addition, the final part of this appendix explains how to
configure the logging libraries, Dependabot, and GitHub Actions (to build and test
the project following a CI approach).

359

https://github.com/bonigarcia/selenium-webdriver-java
https://pages.github.com
https://bonigarcia.dev/selenium-webdriver-java
https://bonigarcia.dev/selenium-webdriver-java
https://getbootstrap.com
https://github.com/features/actions
https://github.com/dependabot

Project Layout
Figure C-1 shows the schematic representation of the examples repository layout.

Figure C-1. Layout of the examples repository (hosted on GitHub)

Since I am providing each example in four flavors (JUnit 4, JUnit 5, JUnit 5
plus Selenium-Jupiter, and TestNG), the configuration in both Maven and Gradle is
based on multiprojects. This way, the examples repository has four modules, one per
testing framework: selenium-webdriver-junit4, selenium-webdriver-junit5,

360 | Appendix C: Examples Repository Setup

selenium-webdriver-junit5-seljup, and selenium-webdriver-testng. In Maven,
the multiproject setup is in the pom.xml located in the root folder, and in the file
settings.gradle in Gradle.

As you can see in Figure C-1, each module has the same structure. You can find the
test source code in src/test/java folder. I use Java packages to divide the examples
per chapter (e.g., io.github.bonigarcia.webdriver.jupiter.ch02.helloworld).
Then, each project needs its own Logback configuration file. I use the general config‐
uration file (i.e., logback.xml) placed under the folder src/main/resources. I follow
this convention since it is quite usual to use logging also for the application, and in
case you plan to reuse this project structure, this is the standard approach. Finally, at
the root of each subproject, you can find the specific configuration file for Maven
(pom.xml) and Gradle (build.gradle). You can find the declaration for the depen‐
dencies in these files, as explained in the following section.

Maven
A core concept in Maven is the build lifecycle, the name given to the process of build‐
ing and distributing a particular project. There are three standard build lifecycles in
Maven: default (for project deployment), clean (for project cleaning), and site (for
documentation). These build lifecycles have a list of build phases, wherein each phase
represents a stage in the lifecycle. The primary phases of the default lifecycle are:

validate

Assess the project is correct and all necessary information is available.

compile

Compile the source code.

test

Execute test using a unit testing framework.

package

Bundle the compiled code into a distributable format, such as a Java ARchive
(JAR) file.

verify

Execute further tests (typically integration or other high-level tests).

install

Install the package into the local repository.

deploy

Install the package into a remote repository or server.

Examples Repository Setup | 361

We can use the shell to invoke Maven, using the command mvn. For instance, the fol‐
lowing command invokes the clean lifecycle (i.e., clean the target folder and all its
content) and then it invokes in cascade all the phases of the default lifecycle until
package (i.e., validate, compile, test, and finally, package):

mvn clean package

Another core element in Maven is the concept of plug-ins. A plug-in is a built-in arti‐
fact that executes the phases mentioned above. In this book, we are particularly inter‐
ested in testing. Therefore, we focus on the phases test and verify and their
corresponding plug-ins: maven-surefire-plugin and maven-failsafe-plugin,
respectively. Table C-1 summarizes the main differences between these two plug-ins.

Table C-1. Differences between the Surefire and Failsafe Maven plug-ins

maven-surefire-plugin maven-failsafe-plugin

Description Maven plug-in to execute tests before packaging Maven plug-in to execute tests after packaging

Classic use Unit tests Integration (and other high-level) tests

Basic command mvn test mvn verify

Type Default plug-in (i.e., we can use it without
declaring it in the pom.xml)

Not default plug-in (i.e., we need to declare it in the
pom.xml to use it)

Used version Defined internally in Maven Latest available version

Test name pattern **/Test*.java
**/*Test.java
**/*Tests.java
**/*TestCase.java

**/IT*.java
**/*IT.java
**/*ITCase.java

For simplicity, I use only maven-surefire-plugin for executing tests in the examples
repository. Although these tests are not a unit (in fact, they are end-to-end), it is not a
problem to run them with maven-surefire-plugin (i.e., after compilation and before
packaging). Table C-2 summarizes the basic commands to run tests from the shell
using this plug-in.

Table C-2. Basic commands for running tests with maven-surefire-plugin

Command Description

mvn test Run all tests in the project

mvn test -Dtest=MyClass Run all tests in a single class

mvn test -Dtest=MyClass#myMethod Run a single test in a single class

Nevertheless, if you want to use maven-failsafe-plugin to execute tests, you need to
use the setup shown in Example C-1 in your pom.xml file. Finally, you can run the
tests using the command mvn verify (i.e., run tests after packaging).

362 | Appendix C: Examples Repository Setup

Example C-1. Required Maven configuration for using maven-failsafe-plugin

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <executions>
 <execution>
 <goals>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
</build>

Common Setup
Example C-2 contains the common parts of the Maven configuration in the examples
repository.

Example C-2. Common Maven dependencies in the examples repository

<properties>
 <java.version>1.8</java.version>
 <maven.compiler.target>${java.version}</maven.compiler.target>
 <maven.compiler.source>${java.version}</maven.compiler.source>
</properties>

<dependencies>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>${slf4j.version}</version>
 </dependency>
 <dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>${logback.version}</version>
 </dependency>

 <dependency>
 <groupId>org.seleniumhq.selenium</groupId>
 <artifactId>selenium-java</artifactId>
 <version>${selenium.version}</version>
 <scope>test</scope>
 </dependency>
 <dependency>

Examples Repository Setup | 363

 <groupId>org.assertj</groupId>
 <artifactId>assertj-core</artifactId>
 <version>${assertj.version}</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>io.github.bonigarcia</groupId>
 <artifactId>webdrivermanager</artifactId>
 <version>${wdm.version}</version>
 <scope>test</scope>
 </dependency>
</dependencies>

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>${maven-surefire-plugin.version}</version>
 </plugin>
 </plugins>
</build>

We use Java 8 in this project.

We specify the common dependencies. On the one hand, we declare Selenium
WebDriver, AssertJ, and WebDriverManager using the test scope. This way, we
can use these dependencies only from the test logic (i.e., Java classes under the
src/test/java folder). On the other hand, the scope of Simple Logging Facade
for Java (SLF4J) and Logback is missing, and therefore Maven uses the default,
which is compile. This means we can use these dependencies from both the
application and the test logic. Finally, notice we use Maven properties to declare
the dependency versions (e.g., ${selenium.version}). You can find the precise
version in the online repository.

We need to declare a specific version of maven-surefire-plugin. As explained in
Table C-1, the version used for this plug-in is defined internally by Maven. But to
make the most of this plug-in, we need to specify a newer version.

JUnit 4
In a Maven project using JUnit 4 as the unit testing framework, we also need to
declare the following dependency:

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>${junit4.version}</version>

364 | Appendix C: Examples Repository Setup

 <scope>test</scope>
</dependency>

JUnit 5
Although JUnit 5 is a modular framework, we can declare a single dependency to use
the Jupiter programming model in a Maven project. As you can see in the snippet
below, this artifact is called junit-jupiter, and it transitively pulls the following
JUnit 5 artifacts:

junit-jupiter-api

For developing tests

junit-jupiter-engine

For executing tests in the JUnit Platform

junit-jupiter-params

For developing parameterized tests (see Chapter 8)

<dependencies>
 <dependency>
 <groupId>org.junit.jupiter</groupId>
 <artifactId>junit-jupiter</artifactId>
 <version>${junit5.version}</version>
 <scope>test</scope>
 </dependency>
</dependencies>

Selenium-Jupiter
When using Jupiter in conjunction with Selenium-Jupiter, in addition to the previous
artifacts (junit-jupiter and maven-surefire-plugin), we need to include the coor‐
dinates of Selenium-Jupiter (see the next code sample). In this case, we can remove
the coordinates of WebDriverManager since Selenium-Jupiter transitively pulls it.

<dependency>
 <groupId>io.github.bonigarcia</groupId>
 <artifactId>selenium-jupiter</artifactId>
 <version>${selenium-jupiter.version}</version>
 <scope>test</scope>
</dependency>

TestNG
Finally, the coordinates we need to include in our pom.xml to use TestNG are:

<dependency>
 <groupId>org.testng</groupId>
 <artifactId>testng</artifactId>
 <version>${testng.version}</version>

Examples Repository Setup | 365

 <scope>test</scope>
</dependency>

Although not used in the examples repository, TestNG tests can also be executed on
the JUnit Platform. If you want to enable this mode, you need to add the TestNG
engine for the JUnit Platform to your project setup. You can see more information
about that on the TestNG engine page.

Other Dependencies
This book explains other dependencies used in conjunction with Selenium Web‐
Driver. Table C-3 summarizes these dependencies and the chapter in which they are
presented.

Table C-3. Dependencies for third-party integration in the example repository

Dependency Chapter groupId artifactId

HtmlUnitDriver Chapter 1 org.seleniumhq.selenium htmlunit-driver

Selenium Grid Chapter 6 org.seleniumhq.selenium selenium-grid

rerunner-jupiter Chapter 8 io.github.artsok rerunner-jupiter

JUnit Platform Launcher Chapter 8 org.junit.platform junit-platform-launcher

Awaitility Chapter 9 org.awaitility awaitility

BrowserMob Chapter 9 net.lightbody.bmp browsermob-core

OWASP ZAP Client API Chapter 9 org.zaproxy zap-clientapi

Axe Selenium Integration Chapter 9 com.deque.html.axe-core selenium

Selenide Chapter 9 com.codeborne selenide

JavaFaker Chapter 9 com.github.javafaker javafaker

Extent Reports Chapter 9 com.aventstack extentreports

Allure Chapter 9 io.qameta.allure io.qameta.allure
allure-junit5
allure-testng

Cucumber Java Chapter 9 io.cucumber cucumber-java

Cucumber JUnit 4, 5 or TestNG Chapter 9 io.cucumber cucumber-junit
cucumber-junit-platform-
engine
cucumber-testng

Spring-Boot Web Chapter 9 org.springframework.boot spring-boot-starter-web

Spring-Boot Test Chapter 9 org.springframework.boot spring-boot-starter-test

Appium Java client Chapter 10 io.appium java-client

REST Assured Chapter 10 io.rest-assured rest-assured

366 | Appendix C: Examples Repository Setup

https://github.com/junit-team/testng-engine

In addition, the plug-ins statement needs some extra setup for using some of these
third-party dependencies. The following snippet shows this new setup.

<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>${maven-surefire-plugin.version}</version>
 <!-- The following setup is required only when using Allure -->
 <configuration>
 <properties>
 <property>
 <name>listener</name>
 <value>io.qameta.allure.junit4.AllureJunit4</value>
 </property>
 </properties>
 </configuration>
 <!-- /Allure -->
 </plugin>
 <plugin>
 <groupId>io.qameta.allure</groupId>
 <artifactId>allure-maven</artifactId>
 <version>${allure-maven.version}</version>
 </plugin>
 <plugin>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-maven-plugin</artifactId>
 <version>${spring-boot.version}</version>
 </plugin>
 </plugins>
</build>

This setup (from this line to <!-- /Allure -->) is required only if you plan to
use Allure to generate a test report. If you do not use it, you can safely remove it
from your project.

The listener class changes for the different unit testing frameworks:

• io.qameta.allure.junit4.AllureJunit4 for JUnit 4
• io.qameta.allure.junit5.AllureJunit5 for JUnit 5 (and JUnit 5 plus

Selenium-Jupiter)
• No listener is required for TestNG

In addition to the listener, the Allure plug-in is required when using this reporter
tool.

The Spring-Boot plug-in is recommended when using Spring-Boot.

Examples Repository Setup | 367

Gradle
Each Gradle project is composed of several tasks. Each task represents an atomic
piece of work within the build. Typical examples of tasks in a Java project are:

compileJava

Compiles the application logic (i.e., Java classes in the folder src/main/java).

processResources

Copies the application resources (i.e., files in the folder src/main/resources)
into the output folder (build).

compileTestJava

Compiles the test logic (i.e., Java classes in the folder src/test/java).

processTestResources

Copies the test resources (i.e., files in the folder src/test/resources) into the
output folder.

test

Runs the tests using JUnit or TestNG. Table C-4 summarizes common com‐
mands to run Gradle tests in the shell.

clean

Deletes the project output folder and its content.

Table C-4. Basic commands for running tests with Gradle

Command Description

gradle test Run all tests in the project

gradle test --rerun-tasks Run all tests in the project (even if everything is up-to-date)

gradle test --tests MyClass Run all tests in a single class

gradle test --tests MyClass.MyMethod Run a single test in a single class

Example C-3 contains the common configuration for all the subprojects of the exam‐
ples repository. I explain the relevant parts of this snippet next.

Example C-3. Common setup for Gradle projects

plugins {
 id "java"
}

compileTestJava {
 sourceCompatibility = 1.8
 targetCompatibility = 1.8

368 | Appendix C: Examples Repository Setup

 options.compilerArgs += "-parameters"
}

test {
 testLogging {
 events "passed", "skipped", "failed"
 showStandardStreams = true
 }

 systemProperties System.properties

 if (project.hasProperty("excludeTests")) {
 "$excludeTests".split(",").each { excludeTests ->
 exclude excludeTests
 }
 }

 if (project.hasProperty("parallel")) {
 maxParallelForks = Runtime.runtime.availableProcessors()
 }

 ext.failedTests = []

 tasks.withType(Test) {
 afterTest { TestDescriptor descriptor, TestResult result ->
 if(result.resultType ==
 org.gradle.api.tasks.testing.TestResult.ResultType.FAILURE) {
 failedTests << ["${descriptor.className}::${descriptor.name}"]
 }
 }
 }

 gradle.buildFinished {
 if(!failedTests.empty){
 println "Failed test(s) for ${project.name}:"
 failedTests.each { failedTest ->
 println failedTest
 }
 }
 }
}

repositories {
 mavenCentral()
}

dependencies {
 implementation("org.slf4j:slf4j-api:${slf4jVersion}")
 implementation("ch.qos.logback:logback-classic:${logbackVersion}")

 testImplementation("org.seleniumhq.selenium:selenium-java:${seleniumVersion}")
 testImplementation("org.assertj:assertj-core:${assertjVersion}")

Examples Repository Setup | 369

 testImplementation("io.github.bonigarcia:webdrivermanager:${wdmVersion}")
}

Since we are implementing a Java project, we need to declare the java plug-in.

For compiling the tests, we use Java 8.

Although not mandatory, we force writing the test logs in the standard output.

This allows passing Java system properties in the command line (as explained in
Example B-1).

This clause allows using the property excludeTests at the command line to
exclude some tests. For instance, the following command excludes those tests
starting with the word Docker: gradle test -PexcludeTests=**/Docker*

These lines allow running tests in parallel using the command gradle test
-Pparallel.

The following clauses gather the failed test in the property failedTests and dis‐
play this information in the standard output at the end of the test suite execution.

We use Maven Central to pull dependencies.

The common dependencies are Selenium WebDriver, AssertJ, WebDriverMan‐
ager (for tests), and SLF4J and Logback (for the whole project).

JUnit 4
The specific setup for JUnit 4 is as follows:

test {
 useJUnit() {
 if (project.hasProperty("groups")) {
 includeCategories "$groups"
 }
 if (project.hasProperty("excludedGroups")) {
 excludeCategories "$excludedGroups"
 }
 }
}

dependencies {
 testImplementation("junit:junit:${junit4Version}")
}

370 | Appendix C: Examples Repository Setup

https://docs.gradle.org/current/userguide/java_plugin.html
https://search.maven.org

We use an extra configuration to allow filtering tests using the class name (see
“Categorizing and Filtering Tests” on page 256).

We include the JUnit 4 dependency.

JUnit 5
When using JUnit 5, we need to specify the junit-jupiter artifact (like in Maven, it
depends on junit-jupiter-api junit-jupiter-engine, and junit-jupiter-

params). In addition, we need to select the JUnit Platform for executing by using the
clause useJUnitPlatform() in the test task setup.

test {
 useJUnitPlatform() {
 if (project.hasProperty("groups")) {
 includeTags "$groups"
 }
 if (project.hasProperty("excludedGroups")) {
 excludeTags "$excludedGroups"
 }
 }
}

dependencies {
 testImplementation("org.junit.jupiter:junit-jupiter:${junit5Version}")
}

Selenium-Jupiter
If you use Selenium-Jupiter, in addition to the previous configuration for JUnit 5, you
need to include the following dependency. In this case, we can remove WebDriver‐
Manager since it is pulled transitively by Selenium-Jupiter.

dependencies {
 testImplementation("io.github.bonigarcia:selenium-jupiter:${selJupVersion}")
}

TestNG
Finally, for using TestNG as the unit testing framework, we need to include the
following setup:

test {
 useTestNG() {
 if (project.hasProperty("groups")) {
 includeGroups "$groups"
 }
 if (project.hasProperty("excludedGroups")) {
 excludeGroups "$excludedGroups"

Examples Repository Setup | 371

 }
 }

 scanForTestClasses = false
}

dependencies {
 testImplementation("org.testng:testng:${testNgVersion}")
}

We include these statements to allow filtering by class name.

This property needs to be set to false to match the include and exclude patterns
in the filtering process.

We include the TestNG dependency.

Other Dependencies
We need to include additional dependencies in the Gradle setup to use third-party
libraries. Table C-3 (in the previous section) summarizes the coordinates for these
dependencies and the chapter in which they are presented. In addition, a couple of
additional plug-ins are required in the Gradle setup (for using Allure and Spring-
Boot, respectively). For using Allure, you also need to define an extra repository, as
follows:

plugins {
 id "io.qameta.allure"
 id "org.springframework.boot"
}

repositories {
 maven {
 url "https://plugins.gradle.org/m2/"
 }
}

Logging
I use two logging libraries in the examples repository:

Logback
This is the actual logging framework (also called logger). Logback is used by
many relevant Java projects, such as Spring Framework and Groovy, to name a
couple.

372 | Appendix C: Examples Repository Setup

https://logback.qos.ch

Simple Logging Facade for Java (SLF4J)
This is a popular utility based on the facade design pattern that decouples the
underlying logger. It supports the main logging frameworks (e.g., Logback, Log4j,
or SimpleLogger, among others). As summarized in Table C-5, SLF4J defines five
logging levels depending on the severity of the message.

Table C-5. Log levels in SLF4J

Log level Description

ERROR Used to report flaws in our application.

WARN Something unexpected happened, but it does not affect the expected application behavior.

INFO Informative messages, such as the application entered a given state, etc.

DEBUG Information for diagnosing and troubleshooting.

TRACE Finest-grained information. We use this level only in exceptional cases where we need a complete understanding
of what is happening in our application.

As usual, to use these libraries, we need to resolve the corresponding dependencies
(see next section for details in Maven and Gradle). Then, we need to configure Log‐
back properly. For that, we need to include an XML configuration file in our project
classpath. If we are configuring the logging for the whole project (i.e., application plus
test logic), the name of this file should be logback.xml. In this case, it should be
available within the application resources, typically under the src/main/resources
folder (see next section for further information about the project layout). If we are
logging only for tests, the name of the configuration file is logback-test.xml and is
stored within the tests resources (e.g., in src/test/resources folder).

The syntax in both cases (logback.xml and logback-test.xml) is the same.
Example C-4 shows an example of a configuration file. This XML file sets the pattern
for each logging line, composed by the timestamp, the thread name, the trace level,
the source (package, class name, and code line), and the message. In this example,
INFO is the default logging level. This way, every trace of this level or more severe
ones (i.e., WARN, ERROR, and FATAL) is displayed, but not the following (i.e., DEBUG and
TRACE). In addition, the traces from the package io.github.bonigarcia (used in the
test examples, WebDriverManager, and Selenium-Jupiter) is DEBUG.

Example C-4. Logback configuration file

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
 <encoder>
 <pattern>%d{yyyy-MM-dd HH:mm:ss} [%thread] %-5level %logger{36}.%M\(%line\)
 - %msg%n</pattern>
 </encoder>

Examples Repository Setup | 373

https://www.slf4j.org

 </appender>

 <logger name="io.github.bonigarcia" level="DEBUG" />

 <root level="INFO">
 <appender-ref ref="STDOUT" />
 </root>

</configuration>

The final step is using a variable for logging in our Java classes. To that aim, we can
use the code of Example C-5. This snippet provides a handy way to get the current
class using reflection through the method lookup(). Then, we declare the variable for
logging (called log in this example) and using the SLF4J’s method getLogger().
Finally, we can use the variable log in any method of this class to log messages of dif‐
ferent levels.

Example C-5. Example of logging messages

static final Logger log = getLogger(lookup().lookupClass());

log.info("This is an informative message");
log.debug("This is a debugging message");

GitHub Actions
I use GitHub Actions as the CI server for the examples repository. This way, each
time I commit a new change to the repo, GitHub Actions builds the project and exe‐
cutes all the tests. Example C-6 shows the configuration to carry out this process.

Example C-6. GitHub Actions workflow configuration

name: build

on:
 push:
 branches: [master]
 pull_request:
 branches: [master]

env:
 DISPLAY: :99
 WDM_GITHUBTOKEN: ${{ secrets.WDM_GITHUBTOKEN }}

jobs:
 tests:
 runs-on: ${{ matrix.os }}
 strategy:

374 | Appendix C: Examples Repository Setup

https://github.com/bonigarcia/selenium-webdriver-java/actions

 matrix:
 os: [ubuntu-latest, windows-latest, macos-latest]
 java: [8]

 steps:
 - name: Checkout GitHub repo
 uses: actions/checkout@v2
 - name: Set up Java
 uses: actions/setup-java@v2
 with:
 distribution: 'temurin'
 java-version: ${{ matrix.java }}
 - name: Start Xvfb
 run: Xvfb :99 &
 - name: Test with Maven
 run: mvn -B test
 - name: Test with Gradle
 run: ./gradlew test

The events that trigger the workflow are push (new commits in the repository)
and pull_request (commits proposed by other developers).

Two environment variables are required:

DISPLAY

The browsers controlled by Selenium WebDriver, by default, need to be exe‐
cuted in an operating system with a graphical user interface. On the other
side, the Linux distributions available in GitHub Actions are headless (i.e.,
without a graphical user interface). Thus, we use Xvfb (X virtual framebuffer)
to run WebDriver tests on these Linux distributions. Xvfb is an in-memory
display server for Unix-like systems that requires the declaration of the envi‐
ronment variable DISPLAY with the screen number for the graphical system
in Linux (X11).

WDM_GITHUBTOKEN

GitHub hosts some of the drivers required by Selenium WebDriver (e.g.,
geckodriver or operadriver). When external clients (like WebDriverMan‐
ager) make many consecutive requests to GitHub, it eventually returns an
HTTP error response (403, forbidden) due to its rate limit. WebDriverMan‐
ager can make authenticated requests using a personal access token to avoid
this problem. Figure C-2 shows the permissions granted to this token in the
examples repository. All in all, this environment variable exports the value of
this token. I keep the actual value of this token as a GitHub repository secret.

For the sake of completeness, I execute the workflow in three different operating
systems: Ubuntu (i.e., Linux), Windows, and macOS, using Java 8 in all of them.

Examples Repository Setup | 375

The workflow has five steps:

1. Check out the repository.
2. Set up Java 8 using Eclipse Adoptium.
3. Start X virtual framebuffer.
4. Run all tests with Maven.
5. Run all tests with Gradle.

Figure C-2. Permissions of the GitHub personal access token used in the examples
repository

Dependabot
To configure Dependabot, we need to include a file called dependabot.yml in the
folder .github of our repository. Example C-7 shows this content in the examples
repository.

376 | Appendix C: Examples Repository Setup

https://adoptium.net

Example C-7. Dependabot configuration

version: 2
updates:
- package-ecosystem: maven
 directory: "/"
 schedule:
 interval: daily
 time: '06:00'
 open-pull-requests-limit: 99

- package-ecosystem: gradle
 directory: "/"
 schedule:
 interval: daily
 time: '06:00'
 open-pull-requests-limit: 99

- package-ecosystem: github-actions
 directory: "/"
 schedule:
 interval: daily
 time: '06:00'
 open-pull-requests-limit: 99

We check daily the updates for the Maven dependencies.

We check daily the updates for the Gradle dependencies.

We check daily the updates for the GitHub Actions setup.

Summary
All the examples presented in this book are available in a public GitHub repository.
This appendix showed the fine-grained configuration details for the build tools
(Maven and Gradle), dependencies (Selenium WebDriver, JUnit, TestNG, Selenium-
Jupiter, WebDriverManager, etc.), logging (Logback and SLF4J), and other services
(GitHub Actions, GitHub Pages, and Dependabot).

Examples Repository Setup | 377

https://github.com/bonigarcia/selenium-webdriver-java

Index

A
A/B testing, 21, 307
above() method, 77
absolute file paths, 83
absolute queries, 69
accept() method, 134
acceptance testing, 18
acceptInsecureCerts capability, 172
accessibility testing, 21, 306-307
Actions class and methods, 85-93, 346
add-ons, 155-160
addExtensions() method, 156
addListener() method, 182
@After annotation, 37
@AfterAll annotation, 40
@AfterClass annotation, 37, 42
@AfterEach annotation, 40
afterGet() method, 140-141
@AfterMethod annotation, 42
AfterTestExecutionCallback extension, 271, 273
alert dialog boxes, 133-135
Alert interface and methods, 134
Allure, 315, 367, 372
Android Virtual Device (AVD), 329, 332
Apache HttpCLient, 294-296
Apache JMeter, 298-301
API key, disabling, 304
Appium, 327-332, 367
Appium Server, 327, 339
AppiumDriver class, 330-332
Applitools Eyes, 307
apps, classifications of, 325
argument providers in JUnit 5, 248-251
@Arguments annotation, 147, 150

artifactId, 34
assertion libraries, 26
assertions, 44, 89
AssertJ assertions, 26, 44, 46, 111, 200, 224, 334
assertThatThrownBy() method, 111
assumption logic, 48
asynchronous JavascriptExecutor scripts, 102,

109-110, 112, 164
attributes function, XPath, 69
attributes, HTML, 62-66, 81
authentication, approaches to, 179, 185,

191-193, 218, 238, 246, 346
automated testing, overview, 16, 24-28
automation of browsers

architecture for, 197-199
with cookies, 120
driver management and, 11-12, 30, 36, 203,

351-355, 357
Selenium suite for, 3, 5-10, 30

AVD (Android Virtual Device), 329, 332
Awaitility, 292-293, 367
Axe Selenium Integration, 306-307, 367
axes function, XPath, 69

B
base page class, POM, 236-239
Base64, 113-115, 179, 184, 186, 193
basic authentication, 179, 185
Beck, Kent, 24, 37
@Before annotation, 37
@BeforeAll annotation, 40
@BeforeClass annotation, 37, 42
@BeforeEach annotation, 40
@BeforeMethod annotation, 42

379

beforeQuit() method, 140-141
Behavior Driven Development (BDD), 316-319
Behavior-Driven Development (BDD), 21
below() method, 77
beta versions, browser, 226, 227
BiDi, WebDriver, 194-195, 346
bidirectional communication, 194-195
binary paths, browser, 165
black-box testing, 19
BlazeMeter JMX Converter, 300
Boehm, Barry, 19
Booch, Grady, 22
boolean function, XPath, 69
boundary testing, 309
box model, CSS, 76
browser binaries, 343
browser capabilities (see browser-specific capa‐

bilities)
Browser Extension, W3C, 8
Browser Extensions API, 158
Browser interface, 349
browser log, 44, 168-169, 266, 297
browser sessions, identifier for, 58
browser-specific capabilities

binary path specification, 165
browser specification for, 145, 150, 201
Capabilities hierarchy and interface,

145-146, 199, 348
device emulation, 153-155, 187, 326
of Edge in IE mode, 175-177
file downloading, 292-294
geolocation, permission for, 160-162
headless browsers, 147-150
headless mode, 342, 343
incognito mode, 175
insecure pages, loading, 171-173
localization for end users, 173-175
log gathering, 168-169
notifications, permission for, 162-165
page loading strategies, 151-152
user media, access to, 169-171
version 3 to 4 changes in, 348
web extensions for, 155-160
web proxies for, 166-168, 296-297

browserInDocker() method, 224
BrowserMob proxy, 296-300, 367
browsers

automation of (see automation of browsers)
CDP and versions of, 181

cloud provider support for, 14, 217-219
cross-browser testing with, 20, 252-256
developer tools in, 12, 72-74
drivers, overview of, 5-6, 11, 30, 355
evergreen, 11, 30, 352, 357
history with, 117
legacy, 32, 175-177
local, 14, 197
local languages in, 173-175
patched, 342
remote (see remote browsers)
testing for availability of, 48
WebDriver hierarchy of classes of, 35, 54
WebDriverManager and versions of, 225,

227, 351-352
browsers, interoperable features of

browser history, 117
cookies, 120-125
dialog boxes, 133-136
dropdown lists, 125-128
event listeners, 138-141
JavaScript execution, 101-110
navigation targets, 128-133
screenshots, 112-116
shadow DOM, 118-120
summary of, 101, 144
timeouts, 110-112
web storage, 137
WebDriver exceptions, 142-144
window size and position, 116-117

browsers, noninteroperable features of
bidirectional communication (BiDi),

194-195
browser capabilities (see browser-specific

capabilities)
Chrome DevTools (see Chrome DevTools)
location context, 191
printing web pages, 193
summary of, 144, 196
web authentication, 191-193

build lifecycle, 34, 361
build servers, 23
build tools, 31, 49
build() method, 86, 87
build.gradle, 34, 361
builder in RemoteWebDriver, 147, 201
builder pattern, 54, 86
builder() method, 54
builder, WebDriverManager, 56-57, 201

380 | Index

By.tagName() locator, 63
ByAll() class, 74-76
ByChained() class, 74-76
ByIdOrName() class, 74

C
@CacheLookup annotation, 243, 244
callbacks, 109, 164
capabilities (see browser-specific capabilities)
Capabilities hierarchy and interface, 145-146,

199, 348
CapabilityType class and attributes, 200
categorizing tests, 256-260
@Category annotation, 257
CD (Continuous Delivery), 24
CDP (Chrome DevTools Protocol) (see

Chrome DevTools Protocol (CDP))
certificate checks, disabling, 171-173, 190
certificates, invalid, 171
checkboxes, 68, 86
checked exceptions, 143
child nodes function, XPath, 69
Chrome

binary path for, 165
capabilities, overview of, 145-147, 348
cross-browser testing with, 252-256
driver for, 37, 53, 351, 355
error messages with update of, 357
event listeners with, 195
file downloading with Awaitility and,

292-293
geolocation access in, 160-161, 191
hello world example with, 45-47
incognito mode in, 175
launching in Docker, 220
loading insecure pages in, 172
localization test in, 173, 174
log gathering in, 168-169
as main browser, 30
media permissions in, 170-171
notifications permission in, 164
page loading strategy in, 151-152
printing pages in, 193
RemoteWebDriver tests with, 200, 202, 224,

227-228
version selection with, 226, 227
web extensions for, 155-157, 158
WebDriver instantiation with, 55-57,

147-148, 224

Chrome DevTools Protocol (CDP)
about, 6, 12, 177
authentication with, 179
blocking URLs with, 186
with Chromium, 72, 177, 180, 339, 341, 346
console listeners with, 187
cookie management with, 189
device emulation with, 153-155, 187, 326
extra headers with, 185
full page screenshots with, 183-185
geolocation override with, 188
loading insecure pages with, 190
locating elements on web page with, 72-73
network emulation with, 181-183
network interceptor in, 178
network monitoring with, 182
performance metrics with, 185
Puppeteer and, 341
raw commands in, 180-190
Selenium wrappers in, 177-180
WebDriverIO and, 339

Chrome Extension (CRX) file, 156
chromedriver, 5, 6, 30, 37, 203-205, 207, 224,

339, 355-358
ChromeDriver, 35, 53, 102, 137, 177, 180, 191,

197, 348, 355
chromedriver() method, 36
ChromeOptions, 55, 146, 148, 152, 156, 199,

332, 348
Chromium

browser capabilities with, 146, 153-155, 158,
168, 326

Chrome DevTools with, 72, 177, 180, 339,
341

driver for, 37, 351, 355
Playwright with, 342
Puppeteer with, 341
Selenium WebDriver and, 32, 48
web authentication with, 192

CI (Continuous Integration) environment,
22-24, 30, 115

circumference, drawing, 92
class attributes as test parameters, 245-247
class, HTML attribute, 62-65
classes of browsers, 35, 54
clear() method, 61, 82
CLI (command-line interface) tool, 203-205,

355
click and hold, 91-92

Index | 381

click() method, 61, 85-86, 87
clickAndHold() method, 87, 92
client-server architectures, 327, 333, 340
close() method, 57, 59
closing WebDriver objects, 56, 59
cloud providers, 217-219, 339
code

duplication of, 232-233
maintainability of, 231, 233, 236, 244
reusable, 232, 237

code hosting platforms, 23
code instrumentation, Selenium Grid, 214
coding tools, 30
Cohn, Mike, 17
Color class, 107
color picker, 106-108
colorPicker.send Keys(), 107
combinators CSS selector, 67
command line options, 278, 281, 356
command-line interface (CLI) tool, 203-205,

355
commands database, 351
communication, bidirectional, 194-195
community resources, 15
compose scripts, docker-selenium, 221
compound locators, 74-76, 81
conditional test execution extension, 41, 271
configuration

for Gradle, 34, 279, 315, 361
Logback file for, 361
for Maven, 34, 278, 315, 361
parameters for parallel test execution, 278,

279, 281
for Selenium Grid, 216, 222
Selenoid manager for, 222

confirm dialog boxes, 133, 135
console listeners, 187, 194, 195
console, Selenium Grid, 205
consoleEvent events, 194, 195
constructor of RemoteWebDriver, 199-201
context-click() method, 85, 88-89
Continuous Delivery (CD), 24
Continuous Deployment, 24
Continuous Integration (CI) environment,

22-24, 30, 115
Cookie class and methods, 121
cookies, management of, 120-125, 189
copy and paste, 92-93
create() method, 224, 301

createDecorated() method, 139
createSession() method, 180
credentials, authentication, 179, 185, 191-193,

218, 238, 246, 318
cross-browser testing, 20, 252-256
CSS

box model, 76
modal window dialog boxes, 134, 136
selectors, 62, 66-69, 72, 80-82, 105

@CsvSource argument provider, 248, 250
Cucumber, 27, 316-319, 367
Cuellar, Dan, 327
Cypress, 336-339

D
data collection, Selenium Grid, 214
data list elements, 127-128
data selection for tests, 309-312
@DataProvider annotation, 247
date picker example, 78-80
DEBUG log level, 46, 205, 373
decorate() method, 139
Decorate<T> generic class, 139
decorator class, creating, 139
default lifecycle, 361
Dependabot, 359, 376
Depended-On Component (DOC), 27
dependency(ies)

about, 34
Dependabot updating of, 359, 377
fluent assertions as, 44
with Gradle, 359, 370-372
logging libraries as, 44, 372-374
with Maven, 359, 363-366
for projects, 34-44, 359, 363-367, 370-372
for third-party integration, 291, 366-367,

372
unit testing frameworks as, 37-44, 364-366,

370-372
WebDriver hierarchy as, 35
WebDriverManager as, 36

design pattern, POM, 231-239
DesiredCapabilities methods, 200, 348
developer tools, browser, 12, 72-74
development (dev) version of browser, 226, 227
development testing, 19
device attributes, 154
device emulation, 153-155, 187
deviceMetrics, setting attributes with, 155

382 | Index

DevOps (development and operations), 24
DevTools (see Chrome DevTools Protocol

(CDP))
devTools class attribute, 180
DevToolsException exception, 179
dialog boxes, 133-136
digest authentication, 179
directory structure for project, 32-34
disabling tests, 286-289
dismiss() method, 134, 135
DISPLAY env variable, 375
distributed mode, Selenium Grid, 203, 208-213
distributed tracing, 214
Distributor node, 209-211, 213
DOC (Depended-On Component), 27
Docker containers

about, 14
for browser infrastructure support, 14, 31,

219-228
Docker Engine in, 14, 31, 219, 224
Docker Hub in, 14, 219
and docker-selenium, 14, 220-222
and images for remote browsers, 220-222,

224
launching, 220-221
Selenium-Jupiter with, 227-228
Selenoid with, 222-223
WebDriverManager with, 224-227
with WebManager for load testing, 301-303

@DockerBrowser annotation, 227
dockerized browsers, 220, 223, 225-227
documentation, Selenium, 15, 350
DOM (Document Object Model)

function and structure of, 59-61
listener for event changes in, 194-195
shadow DOM in, 118-120
with XPath, 69

Domain Specific Language (DSL), 240-242
domMutation events, 194-195
done callback, 109
doubleClick() method, 88-89
downloading drivers, 355
drag and drop, 90-91
dragAndDrop() method, 87, 91
dragAndDropBy() method, 87, 91
driver cache, 352
driver management, 12

(see also WebDriverManager)

automation of, 11-12, 30, 36, 203, 351-355,
358

manual, 11, 355-357
steps in procedure of, 11, 36, 355-357

driver.manage().logs(), 168-169
driver.quit() method, 225
@DriverCapabilities annotation, 202, 289
drivers

about, 358
in Appium, 328
architecture of, 5-6, 197-199
automatic browser updates and, 11, 30, 357
and browser session identification, 58
downloading, 355
maintenance of, 11, 357
and Selenium WebDriver, 5

(see also Selenium WebDriver API)
setting up, 356
versions of, 11, 120, 351-352, 355
WebDriver hierarchy of classes of, 35, 137,

199
WebDriverManager resolution of, 55-57,

150, 152, 203-205, 241, 351-354
@DriverURL annotation, 202
dropdown lists, 125-128
DRY (Don’t Repeat Yourself) with code, 233
DSL (Domain Specific Language), 240-242
Duration timeout argument, 96, 98, 347
dynamic grid, docker-selenium, 222

E
eager page loading strategy, 151
Eclipse IDE, 44, 96, 138
ecosystem, Selenium, 10-16

browser infrastructure in, 14
community in, 15
driver managers in, 11-12
frameworks in, 12-14
language bindings in, 10
locator tools for web elements in, 12

ecosystems, software, 10
Edge

capabilities, overview of, 145-147, 348
CDP and, 177

(see also Chrome DevTools Protocol
(CDP))

as Chromium-based browser, 146, 153-155,
177, 180, 192

cross-browser testing with, 252-256

Index | 383

driver for, 5, 37, 53, 351, 355
event listeners with, 195
geolocation access in, 160-161, 191
incognito mode in, 175
in Internet Explorer mode, 175-177
loading insecure pages in, 172
localization test in, 173, 174
log gathering in, 169
as main browser, 30
media permissions in, 170-171
and msedgedriver, 5, 30, 37, 149, 169, 355
notifications permission in, 164
page loading strategy with, 151
printing pages in, 193
and RemoteWebDriver object creation, 201
web extensions for, 155-157, 158
WebDriver instantiation with, 147, 148

EdgeDriver, 53, 137, 191
EdgeOptions, 146, 149, 156, 348
Electron, 9
emulation of mobile devices, 153-155, 187, 326
emulation of network conditions, CDP for,

181-183, 326
Emulation.setDeviceMetricsOverride com‐

mand, 187
Emulation.setGeolocationOverride() com‐

mand, 188
@EnabledIfBrowserAvailable annotation, 48
@EnabledIfDockerAvailable, 227
enableVNC capability, 223
end-to-end (E2E) testing

about, 17
alternatives to Selenium for, 336-344
challenges with, 112, 231, 265, 310
failure analysis in, 112, 265-273
headless browsers for, 147
hello world example of, 45-49
maintainability with, 231, 244
project setup for, 32-34
reliability of, 231, 273
Selenium WebDriver for, 3, 18, 28, 336
Selenium-Jupiter with, 42
software requirements for, 29-32
versus system testing, 17

endpoints in HTTP, 333
equivalence partitioning, input data and, 309
error messages, 44, 143, 357, 375
Event Bus node, Selenium Grid, 209, 209, 213
event listeners, 138-141, 187, 194-195, 346-347

event-driven architecture, 343
EventFiringDecorator interface, 138, 139, 141,

347
events, community, 15
evergreen browsers, 11, 30, 352, 357
examples repositories, 359-377

configuration of subprojects in, 368-370
Dependabot with, 359, 376
and dependencies, 34-44, 359, 363-367,

370-372
GitHub Actions in, 359, 374-376
GitHub and GitHub services for, 23, 32, 359
Gradle projects in, 368-372
layout of projects in, 32-34, 360
logging libraries in, 44, 372-374
Maven projects in, 361-367
naming convention for, 58
source code in, 22, 32, 361

exception handling extension, 41, 271
exceptions, 84, 94, 142-144
excludeTests property, 257, 370
exclusion and inclusion of tests, 256-260, 370
executeAsyncScript() method, 102, 109-110
executeScript() method, 102-103
@Execution annotation, 282
ExpectedConditions class, 96-98
explicit waits, 96-98, 106, 131, 237
exploratory testing, 16
extensions, Jupiter, 41-42, 271, 273, 277
Extent Reports, 313-315, 367

F
failure analysis, 112, 265-273

JUnit 4 for, 266-270
JUnit 5 for, 271-273
Selenium-Jupiter for, 273
TestNG for, 270

FailureWatcher extension, 272
fake data, 310-312
Fielding, Roy, 332
file downloading, 291-296
file uploading, 83-84
filtering tests, 256-260, 371-372
@FindAll annotation, 242
@FindBy annotation, 242, 244
FindBy interfaces, changes in, 346
findElement() method, 57, 59, 62, 63, 120, 128
findElements() method, 57, 59, 62, 120
Firefox

384 | Index

capabilities, overview of, 145-147, 348
CDP and, 177, 180
cross-browser testing with, 252-256
driver for, 5, 37, 53, 351, 355
file downloading with, 293
full page screenshots in, 184
and geckodriver, 5, 6, 30, 37, 203-205, 355
geolocation access in, 160, 162
hello world examples with, 47
incognito mode in, 175
loading insecure pages in, 172
localization test in, 174
as main browser, 30
media permissions in, 171
notifications permission in, 164
page loading strategy with, 151
Playwright with, 342
printing pages in, 193
RemoteWebDriver examples with, 201, 225
Selenium IDE with, 8
version selection with, 226, 227
web extensions for, 155, 157, 159
WebDriver instantiation with, 147, 149

Firefox Developer Tools, 12, 72, 73
FirefoxDriver, 53, 102, 137, 159, 177, 180, 184,

197, 355
FirefoxOptions, 147, 150, 348
@FixMethodOrder annotation, 261-262
flakiness, test, 231, 273
fluent APIs, 54, 225, 308-309
fluent assertions, 44
fluent waits, 98-99
FluentWait class, 98-99
forking and JVM processes, 279
form slider, 84
frame() method, 129, 132
frames, navigating web pages with, 128, 132
frameworks, summary of, 12-14
full page screenshots with CDP, 183-185, 346
fully distributed mode, Selenium Grid, 203,

208-213
functional testing, 19-21, 112, 252

G
Gamma, Erich, 24, 37
geckodriver, 5, 6, 30, 37, 203-205, 355
generic manager of WebDriverManager, 241,

252-253, 353
geolocation

custom coordinates of, 191
override of, 188
permission for access to, 160-162

GET HTTP method, 333, 335
get user media, 169-171
get() method, 46, 57
getAccessibleName() method, 61
getAriaRole() method, 61
getAttribute() method, 61
getCookies() method, 190
getCssValue() method, 61
getCurrentURL() method, 57
getDomAttribute() method, 61
getDomProperty() method, 61
getFirstSelectedOption(), 126
getFullPageScreenshotAs() method, 184
getInstance() method, 241, 353
getLocation() method, 61
getLogger() method, 374
getPageSource() method, 57
getpinnedScripts() method, 102, 109
getRect() method, 61
getScreenshotAs() method, 113, 115
getSessionId() method, 58
getShadowRoot() method, 61
getSize() method, 61
getTagName() method, 61
getText() method, 61, 134
getTitle() method, 46, 57
getWindowHandle() method, 57
getWindowHandles() method, 57
Gherkin notation, 316-319
Git, 23, 31, 46
GitHub Actions, 23, 359, 374-376
GitHub Pages, 359
GitHub repository, 23, 32, 359
glue code, 317, 319
Gradle

about, 31
command line options in, 281
configuration in, 34, 279, 315, 361
dependencies with, 359, 370-372
with hello world example, 46
parallel test execution with, 279, 370
project layout in, 32-34, 361, 368-372
Selenium Grid coordinates and, 349
setting up drivers with, 356
test inclusion and exclusion with, 257-260,

370

Index | 385

test report creation in, 312, 315
wrapper file, 34

gradlew and gradlew.bat, 34
GraphQL queries, 216
groupId, 34
grouping CSS selector, 67
grouping tests, 257-260, 371-372
GUI (Graphical User Interface)

of Cypress, 337
with date picker example, 78-80
of JMeter test plan, 300-301
of OWASP ZAP, 303
with Selenium IDE, 8

GUI testing, 20

H
Hammant, Paul, 3
Hanrigou, Philippe, 6
HAR (HTTP Archive), 297-300
HasAuthentication interface, 179
HasDevTools interface, 177, 180
HasExtensions interface, 159
HashMap object, 154, 155, 161
HasLogEvents interface, 194-195
HasVirtualAuthenticator interface, 192
headers, additional, 185
headless browsers, 147-150, 342, 343
hidden input text, locating, 66, 69
hierarchy, WebDriver, 35
history, browser, 117
HTML

attributes, 62-66, 81
color picker in, 106
frames and iframes in, 128
link text for, 66
for locating WebElements, 59-61, 63-65
reports in, 312-315
tags, 59-61, 63, 66, 81, 92, 125

HtmlUnit, 32, 48, 367
HTTP

cookies and, 120
error messages from, 375
and headers, 185
methods for creating REST services, 333
network traffic, 296-297
requests and responses, monitoring, 182
status codes for creating REST services, 333
URLs as endpoints in, 333
user agent specification in, 155

web proxies and, 166-168
HTTP Archive (HAR), 297-300
HTTP client library, 294-296
HTTPS, 168, 171, 190
Hub (Selenium Server), 7, 199, 201-203, 205,

221, 222, 226, 339
hub-nodes mode, Selenium Grid, 7, 203,

207-209, 221
Huggins, Jason, 3, 327
hybrid apps, 326

I
Id, HTML attribute, 62-65
identification of project, 34
IDEs (Integrated Development Environments),

8-10, 30, 44, 46, 256, 335, 350
i18n (internationalization), 173
iframes, navigating web pages with, 128, 131
@Ignore annotation, 286
ignoring() method, 98
impersonation, user, 82-86
implicit waits, 94-96, 105, 110
inclusion and exclusion of tests, 257-260, 370
incognito argument and mode, 175
infinite scroll page, 105
INFO log level, 205, 207, 214, 373
initElements() method, 244
input devices, 82-86
input elements/data, 83-85, 128, 309-312
insecure pages, loading, 171-173, 190
installExtension() method, 159
Integrated Development Environments (IDEs),

8-10, 30, 44, 46, 256, 335, 350
integration testing, 17
intercepting invocations extension, 41, 271
internationalization (i18n), 173
Internet Explorer, 5, 32, 37, 175-177, 351
intl.accept_languages capability, 173-175
InvalidArgumentException exception, 84, 143
Inversion of Control (IoC), 320
IretryAnalyzer listener, 276
isDisplayed() method, 61, 239
isDockerAvailable() method, 224
isEnabled() method, 61
isOnline() method, 200
isSelected() method, 61, 86
ITestListener interface, 284

386 | Index

J
Jaeger tracing platform, 214-215
Java

for Appium, 329, 330
assertion libraries for, 26, 44
browser capabilities in, 145-147
commands for project tasks in, 368
and creation of instances, 53, 199, 228
exceptions in, 143
Gradle projects in, 368-370
knowledge of, xv, 29
mock libraries for, 27
for REST Assured, 334
Selenium Grid in, 203, 206, 208
for Spring framework, 320
system properties for driver set-up, 356
WebDriverManager and, 351, 354, 358

Java Development Kit (JDK), 30
Java Faker, 310-312, 367
Java Virtual Machine (JVM), 30
JavaScript

geolocation and, 160
getUserMedia in, 169
interoperability of, 101
for mouse scrolling, 85
network latency and, 94
for Selenium alternatives, 336, 339, 342
Selenium RC and, 4

JavascriptExecutor methods
about, 101-103
asynchronous scripts, 102, 109-110, 112,

164
pinned scripts, 102, 108-109
synchronous scripts, 102-108

JDK (Java Development Kit), 30
JMeter, Apache, 298-301
JSON Wire Protocol, 5, 327
JSON, browser scenarios in, 255
JUnit 4

about, 37
Cucumber test with, 318
for disabling tests, 286
examples convention with, 57
for failure analysis, 266-270
grouping tests with, 257-258
hello world example with, 47
limitations of, 247, 271
with Maven and Gradle, 364, 370
ordering of test execution with, 261-262

parallel test execution with, 280
parameterized tests with, 245-247, 252-253
for retrying tests, 274-276
rules in, 266-268, 274-276
Spring-Boot test with, 320
test lifecycle of, 38
for test listeners, 282-284

JUnit 5
about, 37
architecture of, 38-40
argument providers in, 248-251
Cucumber test with, 318-319
for disabling tests, 287
examples convention with, 57
for failure analysis, 271-273
goals of, 38
grouping tests with, 260
hello world examples with, 45-47, 48
Jupiter and, 40-42, 248-252, 260, 271, 281,

285, 287, 321, 365, 371
with Maven and Gradle, 365, 371
ordering of test execution with, 263
page class example with, 239
parallel test execution with, 281
parameterized tests with, 248-251, 254
for retrying tests, 277
Spring-Boot test with, 320, 321
test lifecycle of, 40
for test listeners, 285
vintage, 40

JUnit 5 with Selenium-Jupiter
for disabling tests, 288
examples convention with, 57
for failure analysis, 273
hello world examples with, 47, 48
Jupiter extensions with, 41-42, 271
with Maven and Gradle, 365, 371
ordering of test execution with, 264
parameterized tests with, 255-256
for retrying tests, 277
Spring-Boot test with, 320, 321

JUnit Pioneer extension, 41, 277
JUnit Platform Launcher API, 38, 285, 286, 319,

365, 367, 371
JUnit, Java tests and, 9, 24, 37
Jupiter

disabling tests with, 287
extensions with, 41-42, 271, 273, 277

Index | 387

JUnit 5 and, 40-42, 248-252, 260, 271, 281,
285, 287, 321, 365, 371

Selenium-Jupiter and, 41-42, 47
(see also Selenium-Jupiter)

JVM (Java Virtual Machine), 30, 279

K
Kasatani, Shinya, 8
keyboard actions, 82-85
keyDown() method, 87, 93
Keys class, 85
Kubernetes, docker-selenium and, 222

L
lang argument, 174
language bindings, 10, 11
languages of locale, browsers and, 173-175
latency, network, 94
legacy software, 32, 40, 175-177
levels of testing, 16-19, 28
libraries, summary of, 12-14
lifecycles, test, 38, 40, 43, 276, 282-286
link text, 62, 65, 66, 81
Linux, 163, 375
listener class, creating, 138
listeners

for console event monitoring, 183
for event notification, 138-141
for network monitoring, 182
with retrying tests, 276
test (for groupings), 270, 282-286, 315
in WebDriver BiDi, 194-195

@Listeners annotation, 285
load testing, 20, 301-303
load-extension argument, 158
loading images, tests of waiting for, 96
loading images, wait time examples with, 94
loading insecure pages, 171-173, 190
loading strategies, web page, 99
local file detector, 84
local repositories, 23
local storage, 137, 352
localization testing, 173-175
locating WebElements (see WebElements, locat‐

ing)
location context, 160-162, 191, 346
location coordinates, overriding, 188
locator strategies, 231
locator tools, summary of, 12

log gathering, 44, 168-169, 266, 297, 372-374
log-level argument, 214
Logback, 361, 372-374
logging libraries, 44, 372-374
loggingPrefs capability, 169
login form, test cases with, 232-244, 246-248,

250-252, 316-318
loginData() method, 251
logs and observability, 214
lookup() method, 374
L10 (localization), 173

M
macOS, geolocation access with, 161
maintenance, driver, 11, 357
manage() method, 57, 120
manage().timeouts() method, 110
managers, browser-driver, 36, 351
manual driver management, 11, 355-357
Marionette Protocol, 6
Maven

about, 31
build lifecycle of, 361
command line options in, 278, 281, 356
configuration in, 34, 278, 315, 361
dependencies with, 359, 363-366
with hello world example, 46
parallel test execution with, 278-279
project layout in, 32-34, 361-366
Selenium Grid and, 206, 349
setting up drivers with, 356
test inclusion and exclusion with, 257-260
test report creation in, 312, 315
wrapper, 34

maven-failsafe-plugin, 362
maven-surefire-plugin, 362-364
maxParallelForks property, 280
media, access to user, 169-171
methodologies of testing, 21-24, 28
methods, chaining, 86
MethodSorters enumeration, 261
@MethodSource argument provider, 248, 250,

251
metrics and observability, 214
metrics, collecting performance, 185
Microsoft compatibility, 175-177
mobile apps

about, 325
Appium for testing of, 327-332

388 | Index

testing of, 326
mobile devices, emulation of, 153-155, 187, 326
mobile testing from cloud providers, 217
mock libraries, 27
modal window dialog boxes, 134, 136
mouse actions, 85-86, 103-106
mouseover, 89-90
moveByOffset() method, 87, 92
moveToElement() method, 89, 92
msedgedriver, 5, 30, 37, 149, 169, 355
mvn command, 362-362
mvnw script, 34
MyEventListener class, 141
myprop attribute, 64-65

N
name, HTML attribute, 62-65
native apps, 325
navigate() method, 57
Navigation interface and methods, 117
navigation targets, 128-133
navigator.geolocation object, 160
near() method, 77
negative testing, 20, 110, 112, 233, 236, 239
network emulation with CDP, 181-183, 326
network latency, 94
network traffic

activating tracking of, 182
intercepting, 178, 296
monitoring, 182, 296
third-party technologies for capturing,

296-297
Network.emulateNetworkConditions() com‐

mand, 181
Network.enable() command, 181
Network.setExtraHTTPHeaders() command,

185
Network.setUserAgentOverride() command,

187
NetworkInterceptor class, 178, 346
new operator, Java, 53
newWindow() method, 129, 130
Node(s), Selenium Grid, 209, 213
Node.js applications, 327, 330, 336, 339,

340-342
nodes, Selenium Grid and, 207-210
none page loading strategy, 151
nonfunctional testing

and A/B testing, 307

about, 20, 298
of accessibility, 306-307
of performance, 298-303
of security issues, 303-305

normal page loading strategy, 151-152
NoSuchElementException exception, 95, 143,

236
notifications, permission for, 162-165
npm install command, 330, 337, 339-343

O
object script argument, 103
object-oriented programming, xv, 29, 35, 232,

236
objects

RemoteWebDriver and, 54, 58, 112,
199-202, 349

WebDriver, 47, 53-59, 147, 150, 152, 167
observability, 213-217
oneOf() method, 54, 55
OpenTelemetry, tracing with, 214-215
Opera, 5, 32, 37, 48, 191, 351
OperaDriver, 191
operating systems, 29, 30, 325
Optimizely, 307
options.setCapability(key, value) method, 200
ordering of test execution

about, 261
with JUnit 4, 261-262
with JUnit 5, 263
with Selenium-Jupiter, 264
with TestNG, 262

output folders, 34
OutputType parameters, 113
OWASP (Open Web Application Security

Project), 303
OWASP ZAP, 303-305, 367

P
page classes, 232, 234-244
Page Factory approach with POM, 242-244
page layout metrics, 184
page loading, 110, 151-152
Page Object Model (POM) (see POM (Page

Object Model))
page objects, POM, 232, 234-242
PageFactory class, 243
PageLoadStrategy values, 151
parallel test execution

Index | 389

about, 278
JUnit 4 for, 280
JUnit 5 for, 281
Maven and Gradle for, 278-280, 370
TestNG for, 280

parameter resolution extension, 41, 42, 147,
202, 271

parameterized managers, 56, 241, 353
parameterized test runner, 245-247
parameterized tests

about, 245
cross-browser testing with, 252-256
with JUnit 4, 245-247, 252-253
with JUnit 5, 248-251, 254, 365
with Selenium-Jupiter, 251, 255-256
with TestNG, 247, 254

@ParameterizedTest annotation, 248, 252
@Parameters annotation, 245
paste, copy and, 92-93
patched browsers, 342
PATH environmental variable (env), 356
pause() method, 87
PDF documents, printing web pages to, 193
penetration testing, 303
perform() method, 87
performance metrics with CDP, 185
performance testing, 20, 298-303
permissions, GitHub token for, 375
permissions.default.desktop-notification label,

164
personal access token, GitHub, 375
pin() method, 102, 108-109
pinned JavascriptExecutor scripts, 102,

108-109, 345
pixels, scrolling by, 104
Playwright, 342-344
Playwright Test, 343
plug-ins, 155-160, 362-364
PNG format, screenshots with, 113, 115, 141,

184
POJOs (Plain Old Java Objects), 334-335
pollingEvery() method, 98
POM (Page Object Model)

design pattern of, 231-239, 244
DSL approach in, 240-242
and maintainability of code, 231, 233, 236,

244
as object-oriented approach, 232, 236
page classes in, 232, 234-242

Page Factory in, 242-244
purpose of, 231

pom.xml, 34, 361
pop-ups (dialog boxes), 133
PortProber class, 207
Pparallel property (Gradle), 280, 370
presenceOfElementLocated condition, 96
printing web pages, 193
PrintsPage interface, 193, 346
priority attribute with @Test, 262
private preference, 175
private-public key pair (credential), 192-193
profile.default_content_setting_values.geoloca‐

tion option, 161, 164
programming languages of Selenium Web‐

Driver, 5, 10
progressive web apps (PWAs), 326
project setup and layout, 32-34, 360, 368
prompt dialog boxes, 133, 135
protocol://username:password@domain, 179
proxies, web, 166-168, 296-297
Proxy class, 167
pseudo CSS selector, 67
public-key cryptography, 191-193
Puppeteer, 341

Q
queries, XPath, 69
quit() method, 46, 57, 59, 225
quitting WebDriver objects, 56, 59

R
radio buttons, 71, 86
random calculator practice page, 274, 276-278
range sliders, 84
Record and Playback (R&P), 8
recorded scripts, exporting, 8-10, 350
recording of sessions, 217, 226, 228, 266
registration, node, 208, 209
regression testing, 23
relative locators, 76-78, 81, 89, 345
relative queries, 69
RelativeBy object, 76
RelativeLocator class, 76
remote browsers

about, 14, 197
architecture, Selenium WebDriver, 197-199
cloud providers for, 217-219

390 | Index

creation of RemoteWebDriver objects for,
199-202, 225, 349

Docker containers for, 14, 219-228
(see also Docker containers)

Selenium Grid for, 6, 203-217
(see also Selenium Grid)

uploading files to, 84
remote session access, docker-selenium, 222
remoteAddress() method, 201
RemoteWebDriver class

builder, 147
constructor of, 199-201
JavascriptExecutor interface and, 102
and mobile devices, 330
object creation in, 199-202, 225
objects and, 54, 58, 112
as parent of WebDriver classes, 35, 199

RemoteWebDriver.builder, 147, 201
reporting of test results, 312-316
repos, 23
repositories

for examples, 23, 32, 58, 359
(see also examples repositories)

GitHub, 23, 32, 359
local, 23
naming convention for examples in, 58

rerunner-jupiter extension, 41, 277, 367
resolution algorithm, 351-352
REST (REpresentational State Transfer) serv‐

ices, 332-335
REST Assured library, 334-335, 367
retry() method, 277
retryAnalyzer attribute, 276
retrying tests, 273-278
right-click (context-click), 85, 88-89
Router node, Selenium Grid, 208, 210-212, 213
@Rules annotation, 266
rules in JUnit 4, 266-268, 274-276
RunListener class, 282
runtime performance metrics with CDP, 185
@RunWith annotation, 245, 284

S
Safari, 5, 32, 48, 55
Sauce Labs, 217-219, 327
scalability of Selenium Grid, 203, 208
scenarios

with Gherkin for BDD, 316-319
Given-When-Then structure for, 21

screenshots, 345
for failure analysis, 112, 266-273
full page, 113, 183-185
with Selenium WebDriver, 112-116
with unit testing frameworks, 268-270,

272-273
script loading timeout, 111
scripts

in Selenium Grid, 7
in Selenium IDE, 9
in Selenium WebDriver, 5
wrapper, 34

ScriptTimeoutException exception, 112, 144
scrollBy() function, 104
scrolling, mouse, 85, 103-106
scrollIntoView() function, 105
SearchContext interface, 120
security checks, disabling, 171-173, 190
security scanner test, 304-305
security testing, 20, 303-305
Select class, 126
select elements versus data lists, 127
select methods, 126
selectByVisibleText() method, 126
Selenese commands, 3
Selenide, 12, 308-309, 367
Selenium

about, xv, 3, 28
core components of, 3-10
documentation of, 15, 350
ecosystem of, 10-16
project structure of, 350
and testing fundamentals, 16-28

Selenium Core, 3-4
Selenium 4 (version), 4, 7, 138, 159, 203, 208,

345-350
Selenium Grid

about, 6, 203, 349, 367
architecture of, 7
CLI options for, 216
custom setup of, 216
Docker images in, 14, 220-222
fat-JAR files for, 203, 207
fully distributed mode of, 203, 208-213
Hub (Selenium Server) of, 7, 199, 201-203,

205, 221, 226, 339
hub-nodes mode of, 7, 203, 207-209, 221
observability of, 213-217
project coordinates for, 349

Index | 391

standalone mode of, 203-207, 220
TOML files for, 217
version 4 of, 349
web console of, 205

Selenium IDE
exporting recorded scripts with, 8-10
Record and Playback (R&P) with, 8
version 4 features of, 350

Selenium Remote Control (RC), 4
Selenium Server (Hub), 7, 199, 201-203, 205,

221, 226, 339
Selenium WebDriver 4 (version), 345-349

authentication in, 179, 192, 346
CDP protocol in, 177, 180, 346
desired capabilities and, 201, 348
event listeners in, 138, 347
exceptions in, 142
migration from version 3, 346-349
pinned scripts in, 108-109, 345
relative locators in, 76, 100, 345
screenshots in, 113, 345, 346
shadow DOM access in, 119, 345
W3C adoption by, 5, 345

Selenium WebDriver API
about, 5, 53, 197, 358
architecture of, 6, 166, 197-199
for automated end-to-end testing, 3, 18, 28,

336
browsers supported by, 5, 137
CDP with, 177
creation of instances with, 53-57
development of, 3-4
driver managers and languages with, 11
drivers supported by, 5, 137, 197
exceptions in, 142-144
in hello world example, 45-49
hierarchy of classes in, 35, 54
keyboard actions in, 82-85
with local browsers, 197
methods of, 57-58
mouse actions in, 85-86
objects in, 53-59
overview of usages, 28
with OWASP ZAP test, 304-305
page objects and classes with, 234-244
programming languages supported by, 5, 10
quitting versus closing in, 59
with remote browsers, 197-199, 228

(see also RemoteWebDriver class)

requirements of, 29-32
setting browser language with, 174
user gestures in, 86-93
vanilla version of, 232-233, 307
versions of, 4
waiting strategies in, 94-100
web proxies in, 166
WebDriver builder in, 54-56
WebElements in (see WebElements, locat‐

ing)
Selenium, alternatives to

about, 325, 336, 344
browsers supported by, 337, 339, 340-343
Cypress as, 336-339
hello world examples with, 337, 339-342
languages of, 336, 339, 340-342
Playwright as, 342-344
Puppeteer as, 341
TestCafe as, 340-341
WebDriverIO as, 339-340

Selenium, complements to
about, 325, 344
Appium as, 327-332
mobile apps, 325-332
REST as, 332-335

Selenium-Jupiter, 47
(see also JUnit 5 with Selenium-Jupiter)
with Docker containers, 227-228
with end-to-end testing, 42
objects in, 47
with remote browsers, 202, 227-228
with unit testing frameworks, 41-42, 47, 48,

57, 251, 264, 273, 277, 288, 365, 371
WebDriver instantiation with, 147, 150
WebDriverManager and, 42, 227-228

Selenoid, 14, 222-223
Selenoid UI, 222
Semantic Versioning (SemVer), 35
send() method, 181
sendKeys() method, 61, 82, 87, 93, 128, 134
server, WebDriverManager as, 355
Session Map node, Selenium Grid, 209, 210,

213
Session Queue node, Selenium Grid, 209, 210,

213
session recordings, 217, 226, 228, 266
session storage, 137
sessionId (session identifier), 58
setCapability() method, 200

392 | Index

setHeadless(true) method, 147
setLocation() method, 191
settings.gradle, 34
setup in testing, xUnit family, 25-26
setup() method, 37, 46
shadow DOM, 118-120, 345
shadow host, 118, 120
shadow root, 118, 120
shell, launching from, 203-205, 207, 212-213,

220-221
simulation of mobile devices, 153-155, 187, 326
@SingleSession annotation, 264
SLF4J (Simple Logging Facade for Java),

372-374
sliders, range, 84
slow calculator example, wait time with, 97
SmalltalkUnit (SUnit), 24
software design principles, 232-233
software for end-to-end testing, 29-32
software project development

build tools for, 31
CI practice and, 22
community resources for, 15
dependencies for, 34-44, 359
with DevOps for teams, 24
lifecycle of, 21
project layout for, 32-34, 360, 368
web frameworks for, 320

source code
in examples repository, 22, 32, 361
loading extensions from, 158-160

Spring portfolio, 320
Spring-Boot, 320-322, 367, 372
@SpringBootTest annotation, 321
src/main/java, 33, 368
src/main/resources, 33, 361, 368, 373
src/test/java, 33, 361, 364, 368
src/test/resources, 33, 368, 373
stacked levels of testing, 16, 17
standalone mode, Selenium Grid, 203-207, 220
step definitions in Gherkin, 317-319
Stewart, Simon, 4, 350
storage, web, 137
stress testing, 20
string script argument, 102
structural testing, 19, 21
submit() method, 61
successBoxPresent() method, 239
SUnit (SmalltalkUnit), 24

Surefire plug-in, 278, 312, 362
SUT (System Under Test)

about, 16
challenges with, 231
in end-to-end testing, 17
with four-phase structure, 25-26
improving design of, 231, 232, 236, 240, 244

switchTo() method, 57, 129-131
synchronous JavascriptExecutor scripts,

102-108
synthetic user media, 170-171
system testing, 17, 27
System Under Test (SUT) (see SUT (System

Under Test))
SystemUtils class, 93

T
tabs, navigating web pages with, 128, 129, 345
@Tag annotation, 260
tag name, HTML, 59-61, 63, 66, 81, 92
tagging tests, 257-260
takeScreenshot(), 140
TakesScreenshot interface, 112, 115
target folders, specifying, 292-293
TargetLocator interface and methods, 129
TDD (Test Driven Development), 21
teams, project software and, 24
teardown in testing, 25, 83, 270
teardown() method, 56
@Test annotation, 40, 42, 245, 258, 262, 276,

286
test classes, 244
test data selection, 309-312
test doubles, 17
Test Driven Development (TDD), 21
test engine API, 38-40
test grouping (TestNG), 43
test instance extension, 271
Test Last Development (TLD), 21
test launcher API, 38
test lifecycle callbacks extension, 41, 42, 271
test lifecycles, 38, 40, 43, 276, 282-286
test listeners, 270, 282-286, 315
test logic, 46, 57, 232, 254, 364
test pyramid, 17
Test Runner, Cypress, 336, 337
test runners, 245-247, 282-284, 343
test setup, 25-26, 37, 46
test skeletons of builders, 54-57

Index | 393

test templates extension, 41, 255-256, 271
TestCafe, 340-341
TestExecutionListener interface, 285, 286
TestInfo parameter, 314
testing

automated, 16, 24-28
categories of, 16
conditional execution of, 41, 256-260, 271,

286-289, 370
end-to-end, 17

(see also end-to-end (E2E) testing)
failure analysis and, 112, 265-273
functional, 19-21, 112, 252
fundamentals of, 16-28
levels of, 16-19, 28
for localization, 173-175
methodologies, 21-24, 28
of mobile apps, 326
nonfunctional, 20, 298-308
order of execution of, 261-265
reliability in, 231, 273
with specified groupings, 43, 256-260,

371-372
stages of execution of, 282-286
SUT (see SUT (System Under Test))
time with execution of, 278
types of, 19-21, 28
xUnit family structure for, 25-26

testing frameworks (see unit testing frame‐
works)

testing trophy, 17
testing.xml configuration file, 280
@TestMethodOrder annotation, 263
TestNG

about, 24, 37, 42
Cucumber test with, 318-319
for disabling tests, 286
examples convention with, 57
for failure analysis, 270
grouping tests with, 258
with Maven and Gradle, 365, 371
ordering of test execution with, 262
parallel test execution with, 280
parameterized tests with, 247, 254
for retrying tests, 276
Spring-Boot test with, 320-321
test lifecycle of, 43, 284
for test listeners, 284

@TestTemplate annotation, 256, 271

TestWatcher rule, 268
text classes, 235
text editors, 30
text function, XPath, 69
third-party technologies

for A/B testing, 307
about, 39, 291, 322
for accessibility testing, 306-307
Allure, 315, 367, 372
Apache HttpCLient, 294-296
Applitools Eyes, 307
Awaitility, 292-293, 367
Axe Selenium Integration, 306-307, 367
with BDD user scenarios, 316-319
BrowserMob proxy, 296-300, 367
Cucumber, 316-319, 367
dependencies for, 291, 366-367, 372
Extent Reports, 313-315, 367
for file downloading, 291-296
for fluent APIs, 308-309
Java Faker, 310-312, 367
for network traffic tracing, 296-297
for nonfunctional testing, 298-308
Optimizely, 307
OWASP ZAP, 303-305, 367
for performance testing, 298-303
for reporting of test results, 312-316
for security testing, 303-305
Selenide, 12, 308-309, 367
Spring-Boot, 320-322, 367, 372
test data selection, 309-312
for web frameworks, 320-322

Thread.sleep() command, 83, 94
threadcount parameter (Maven), 278
Throwable class, 143
time-to-live (TTL) approach, 352
timeout, script loading, 111
TimeoutException exception, 111, 144
timeouts, 99, 110-112, 237, 347
timestamp, system, 152, 182
TLD (Test Last Development), 21
toLeftOf() method, 77
TOML (Tom’s Obvious Minimal Language),

217
toRightOf() method, 77
traces and observability, 214
tracing with OpenTelemetry, 214-215
tracking users, 120-125
troubleshooting, 112, 265-273

394 | Index

try-with-resources statement, 296
TTL (time-to-live) approach, 352

U
UI (User Interface)

elements, handling of, 232
localization in, 173
in testing, 17-20

UI, Selenoid, 222
UiAutomator2 Driver, 328-330
unchecked exceptions, 143
unit testing, 17
unit testing frameworks

about, 24-26, 245, 289
alternatives for, 37-44, 49
cross-browser testing with, 252-256
as dependency of project, 37-44, 364-366,

370-372
for disabling specified tests, 286-289
failure analysis with, 265-273
for grouping tests, 257-260
hello world examples with, 45-49
JUnit 4 (see JUnit 4)
JUnit 5 (see JUnit 5)
for ordering of test execution, 261-265
for parallel test execution, 278-282
parameterized tests with, 245-256, 365
for retrying tests, 273-278
Selenium-Jupiter with, 41-42, 47, 48, 57,

251, 264, 273, 277
test listeners for, 282-286
TestNG (see TestNG)

unpin() method, 102, 108-109
until() method, 97, 98
URLs, blocking, 186
usability evaluation, A/B testing for, 307
usability testing, 20
useJUnitPlatform(), 371
user agent specification for device, 155
User eXperience (UX) testing, 20
user gestures, 86-93, 346
user impersonation, 82-86
User Interface (UI) (see UI (User Interface))
user media, access to, 169-171
user scenarios, 316-319
user testing, 19, 316-319
username and password, 179, 185, 192, 233,

238, 246
useunlimitedthreads parameter (Maven), 279

UX (User eXperience) testing, 20

V
validation in testing, 19
@ValueSource argument provider, 248, 254
vanilla Selenium WebDriver API, 232-233, 307
verification in testing, 19, 25
Version Control System (VCS), 22
version resolution, 352
versions database, 352
versions of browsers and drivers, compatibility

of, 225, 227, 351-352, 357
versions of dependencies, 34
versions of Selenium WebDriver, 4

(see also Selenium WebDriver 4 (version))
video recording, docker-selenium, 221
vintage test engine, 40
virtual authenticators, 192
Virtual Network Computing (VNC), 222, 223,

226, 228
visual testing from cloud providers, 217
VNC/noVNC with remote sessions, 226, 228
vulnerability assessment, 303-305

W
W3C specifications

Appium and, 327
Browser Extension and, 8
Geolocation API, 160
Selenium Grid and, 203
Web Accessibility Initiative (WAI) and, 306
Web Authentication API (WebAuthn) and,

191-193
WebDriver and, 5, 7, 120, 336, 339, 345
WebDriver BiDi and, 194-195, 336
for WebDriver protocol, 198

WAI (Web Accessibility Initiative), 306
waiting strategies, 94-100, 231, 237, 239,

292-293, 347
WCAG (Web Content Accessibility Guide‐

lines), 306
wdm.getDockerNoVncUrl() method, 226
WDM_GITHUBTOKEN env variable, 375
Web Accessibility Initiative (WAI), 306
Web Authentication API (WebAuthn), 191-193
Web Components, 119
Web Content Accessibility Guidelines

(WCAG), 306
web driver.remote.server property, 199

Index | 395

web extensions, 155-160
web frameworks, 320-322
web navigation, 85
web pages

changing from light to dark, 156
comparison of variations in, 307
loading strategies of, 99, 151-152
loading timeouts for, 110

web proxies, 166-168, 296
web servers, 327-332
web storage, 137
web stores, 155
web-based apps, 326
WebDriver, 5

(see also Selenium WebDriver API)
builder for, 54-56, 147
development of, 4
hierarchy of classes in, 35
object creation for, 53-57, 147, 150, 152,

235, 254
page object with, 234-242
Selenide and, 308-309
and WebDriverManager, 12, 36, 42, 46,

54-57, 147, 301-303
WebDriver BiDi, 194-195, 346
WebDriver Exceptions class, 142-144
WebDriver objects, 47, 53-59
WebDriverIO, 339-340
WebDriverListener interface and methods,

138-141
WebDriverManager, 12

(see also driver management)
Apache HttpCLient and, 294-296
API and basic calls of, 36
for automation, 12, 30, 203, 351-352
browser version discovery by, 351-352
browsers and drivers of, 36, 351-352
builder utility in, 56-57, 201
as CLI tool, 203-205, 355
configuration of, 354
for creation of RemoteWebDriver objects,

201
in cross-browser testing, 252-253, 254
as dependency of project, 36
with Docker for load testing, 301-303
with Docker for remote browsers, 224-227
driver resolution by, 55-57, 150, 152,

203-205, 241, 351-354
driver version discovery by, 351-352

for Edge in IE mode, 177
as fat-JAR, 203
generic manager of, 252-253, 353
in hello world example, 46
as Java agent, 355
parameterized manager with, 241, 353
Selenium-Jupiter and, 42, 227-228
as server, 226, 355
and WebDriver, 12, 36, 42, 46, 54-57, 147,

301-303
WebDriverWait class, 96-98, 99, 237
WebElement method, 119
WebElement screenshots, 115
WebElements, locating

with browser built-in developer tools, 72-74
complex example with, 78-80
compound locators for, 74-76, 81
CSS selectors for, 62, 66-69, 80-82, 105
CSS selectors versus XPath for, 81
DOM structure for, 59-61, 69
guide to selection of strategy for, 80-82
HTML attributes for, 62-66, 81
HTML tag name for, 63-63, 66, 81, 92
link text for, 62, 65, 81
methods for, 59-62, 350
by proximity to web element, 76-78
relative locators for, 76-78, 81, 89
in shadow DOM, 119
summary of strategies for, 62, 100
summary of tools for, 12
version 3 to 4 changes in, 346, 350
XPath for, 62, 69-71, 80-82, 85, 89, 97

WebKit, 342
WebRTC, 169
WebStorage interface, 137
white-box testing, 19
Window interface, 116
window methods, 116
window size and position, browser, 116-117
window() method, 129, 130
window.localStorage, 137
window.open(url) command, 128
window.sessionStorage, 137
windows, navigating web pages with, 128,

129-131, 345
WindowType parameter, 129-131
withMessage() method, 98
withTimeout() method, 98
wrappers, 34, 177-180

396 | Index

X
XPath (XML Path Language), 62, 69-73, 80-82,

85, 89, 97
XPInstall file, 158
xUnit (unit testing family), 24-26

Xvfb (X virtual framebuffer), 375

Z
ZAP (Zed Attack Proxy), 303
zipFolder(Path) method, 160

Index | 397

About the Author
Boni García (https://bonigarcia.dev) is a visiting professor at Universidad Carlos III
de Madrid (UC3M) in Spain. He is passionate about software engineering with an
emphasis on automated testing. He is the author of more than 45 publications,
including international conferences, journals, book chapters, and the book Mastering
Software Testing with JUnit 5 (Packt). He is the creator and maintainer of different
open source projects related to Selenium, including WebDriverManager (a well-
known helper library for Selenium WebDriver in Java) and Selenium-Jupiter (a JUnit
5 extension for Selenium WebDriver).

He presented his PhD dissertation, focused on automated web navigation and testing,
in 2011. The reference implementation of this work used Selenium IDE and Remote
Control as foundational tools. He continued researching automated testing from 2013
to 2020, participating in the open source projects Kurento, OpenVidu, and ElasTest.
In this period, he adopted Selenium WebDriver as the fundamental framework to
assess WebRTC applications and Quality of Experience. Currently, he continues
working actively with Selenium. His latest publications focus on the Selenium ecosys‐
tem and automated driver management in Selenium WebDriver. He started to collab‐
orate with Sauce Labs as an open source engineer in 2022.

Colophon
The animal on the cover of Hands-On Selenium WebDriver with Java is a crested
shriketit (Falcunculus frontatus). Endemic to mainland Australia, these striking birds
can be found in eucalyptus forests and woodlands, forested gullies, and along rivers
in drier areas. This species can sometimes be located by listening for its repeated
plaintive whistle, but as it often imitates other birds, identification can be difficult.

The crested shriketit is a medium-sized bird with a black-and-white striped head, a
small crest, and a short bill with a hooked tip. It has wide, rounded wings and a
square, slightly forked tail. The males are larger than females, and can also be distin‐
guished by their black throats (females have olive green throats). The shriketit mainly
feeds on insects, but sometimes also consumes fruit and seeds. The bird acquires food
by using its strong beak to tear at or probe tree bark for insects. Shriketits usually for‐
age alone, but can be found in pairs, groups of up to five individuals (usually a family
group), or in mixed feeding flocks with other insect-eating birds.

The breeding season of a crested shriketit usually lasts from August to January. The
male shriketit selects a nest site in a high fork of a eucalyptus tree, attracting the
female to him with quivering and waving wings. The female builds a deep cone-
shaped nest from dry grass and bark strips, covering the outside with spider webs,
moss, and lichen. The male helps collect materials, and both sexes incubate the eggs

https://bonigarcia.dev

and feed the young. The incubation period lasts about 20 days. Two broods may be
raised in a season, and the young birds often remain with their parents until the
beginning of the next breeding season. The nests are often parasitized by various
cuckoo species.

Among all the species of the crested shriketit, the northern subspecies, whitei, is the
one most at threat of extinction. It is endangered in Western Australia, occurring in
such low densities in some areas that populations may not be able to renew them‐
selves and are isolated from each other. More importantly, the hot and widespread
fires in the dry season decrease the ability of insects to establish themselves under the
bark, hence reducing the shriketit’s main source of food. The western subspecies, leu‐
cogaster, is also near-threatened and is affected by land clearing in the wheat belt. The
eastern subspecies, frontatus, is adversely threatened by urban development. Many of
the animals on O’Reilly covers are endangered; all of them are important to the
world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from Lydekker’s Royal Natural History. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant Answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

22
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. |
 17

5

https://oreilly.com

	Copyright
	Table of Contents
	Foreword
	Preface
	Who Should Read This Book
	Why I Wrote This Book
	Navigating This Book
	Part I, Introduction
	Part II, The Selenium WebDriver API
	Part III, Advanced Concepts

	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Part I. Introduction
	Chapter 1. A Primer on Selenium
	Selenium Core Components
	Selenium WebDriver
	Selenium Grid
	Selenium IDE

	Selenium Ecosystem
	Language Bindings
	Driver Managers
	Locator Tools
	Frameworks
	Browser Infrastructure
	Community

	Software Testing Fundamentals
	Levels of Testing
	Types of Testing
	Testing Methodologies
	Test Automation Tools

	Summary and Outlook

	Chapter 2. Preparing for Testing
	Requirements
	Java Virtual Machine
	Text Editor or IDE
	Browsers and Drivers
	Build Tools
	Optional Software

	Project Setup
	Project Layout
	Dependencies

	Hello World
	Using Additional Browsers

	Summary and Outlook

	Part II. The Selenium WebDriver API
	Chapter 3. WebDriver Fundamentals
	Basic WebDriver Usage
	WebDriver Creation
	WebDriver Methods
	Session Identifier
	WebDriver Disposal

	Locating WebElements
	The Document Object Model (DOM)
	WebElement Methods
	Location Strategies
	Finding Locators on a Web Page
	Compound Locators
	Relative Locators
	What Strategy Should You Use?

	Keyboard Actions
	File Uploading
	Range Sliders

	Mouse Actions
	Web Navigation
	Checkboxes and Radio Buttons

	User Gestures
	Right-Click and Double-Click
	Mouseover
	Drag and Drop
	Click and Hold
	Copy and Paste

	Waiting Strategies
	Implicit Wait
	Explicit Wait
	Fluent Wait

	Summary and Outlook

	Chapter 4. Browser-Agnostic Features
	Executing JavaScript
	Synchronous Scripts
	Pinned Scripts
	Asynchronous Scripts

	Timeouts
	Page Loading Timeout
	Script Loading Timeout

	Screenshots
	WebElement Screenshots

	Window Size and Position
	Browser History
	The Shadow DOM
	Cookies
	Dropdown Lists
	Data List Elements

	Navigation Targets
	Tabs and Windows
	Frames and Iframes

	Dialog Boxes
	Alerts, Confirms, and Prompts
	Modal Windows

	Web Storage
	Event Listeners
	WebDriver Exceptions
	Summary and Outlook

	Chapter 5. Browser-Specific Manipulation
	Browser Capabilities
	Headless Browser
	Page Loading Strategies
	Device Emulation
	Web Extensions
	Geolocation
	Notifications
	Browser Binary
	Web Proxies
	Log Gathering
	Get User Media
	Loading Insecure Pages
	Localization
	Incognito
	Edge in Internet Explorer Mode

	The Chrome DevTools Protocol
	CDP Selenium Wrappers
	CDP Raw Commands

	Location Context
	Web Authentication
	Print Page
	WebDriver BiDi
	Summary and Outlook

	Chapter 6. Remote WebDriver
	Selenium WebDriver Architecture
	Creation of RemoteWebDriver Objects
	RemoteWebDriver Constructor
	RemoteWebDriver Builder
	WebDriverManager Builder
	Selenium-Jupiter

	Selenium Grid
	Standalone
	Hub-nodes
	Fully Distributed
	Observability
	Configuration

	Cloud Providers
	Browsers in Docker Containers
	Docker Images for Selenium Grid
	Selenoid
	WebDriverManager
	Selenium-Jupiter

	Summary and Outlook

	Part III. Advanced Concepts
	Chapter 7. The Page Object Model (POM)
	Motivation
	The POM Design Pattern
	Page Objects
	Robust Page Objects

	Creating a Domain Specific Language (DSL)
	Page Factory
	Summary and Outlook

	Chapter 8. Testing Framework Specifics
	Parameterized Tests
	JUnit 4
	TestNG
	JUnit 5
	Selenium-Jupiter
	Cross-Browser Testing
	JUnit 4
	TestNG
	JUnit 5
	Selenium-Jupiter

	Categorizing and Filtering Tests
	JUnit 4
	TestNG
	JUnit 5

	Ordering Tests
	JUnit 4
	TestNG
	JUnit 5
	Selenium-Jupiter

	Failure Analysis
	JUnit 4
	TestNG
	JUnit 5
	Selenium-Jupiter

	Retrying Tests
	JUnit 4
	TestNG
	JUnit 5
	Selenium-Jupiter

	Parallel Test Execution
	Maven
	Gradle
	JUnit 4
	TestNG
	JUnit 5

	Test Listeners
	JUnit 4
	TestNG
	JUnit 5

	Disabled Tests
	JUnit 4
	TestNG
	JUnit 5
	Selenium-Jupiter

	Summary and Outlook

	Chapter 9. Third-Party Integrations
	File Download
	Using Browser-Specific Capabilities
	Using an HTTP Client

	Capture Network Traffic
	Nonfunctional Testing
	Performance
	Security
	Accessibility
	A/B Testing

	Fluent API
	Test Data
	Reporting
	Behavior Driven Development
	Web Frameworks
	Summary and Outlook

	Chapter 10. Beyond Selenium
	Mobile Apps
	Mobile Testing
	Appium

	REST Services
	REST Assured

	Alternatives to Selenium
	Cypress
	WebDriverIO
	TestCafe
	Puppeteer
	Playwright

	Summary and Final Remarks

	Appendix A. What’s New in Selenium 4
	Selenium WebDriver
	Migration Guide

	Selenium Grid
	Selenium IDE
	Other Novelties

	Appendix B. Driver Management
	WebDriverManager: Automated Driver Management
	Generic Manager
	Advanced Configuration
	Other Uses

	Manual Driver Management
	Summary

	Appendix C. Examples Repository Setup
	Project Layout
	Maven
	Common Setup
	JUnit 4
	JUnit 5
	Selenium-Jupiter
	TestNG
	Other Dependencies

	Gradle
	JUnit 4
	JUnit 5
	Selenium-Jupiter
	TestNG
	Other Dependencies

	Logging
	GitHub Actions
	Dependabot
	Summary

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

